Skip to main content
Log in

Computational biophysics approach towards the discovery of multi-kinase blockers for the management of MAPK pathway dysregulation

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The MAPK pathway is important in human lung cancer and is improperly activated in a substantial proportion through number of ways. Strategies on dual-targeting RAF and MEK are an alternative option to diminish the limitations in this pathway inhibition. Hence, we implemented parallel pharmacophore screening of 11,808 DrugBank compounds against RAF and MEK. ADHRR and DHHRR were modeled as a pharmacophore hypothesis for RAF and MEK respectively. Importantly, these hypotheses resulted an AUC value of > 0.90 with the external data set. As a result of phase screening, glide docking, and prime-MM/GBSA scoring, it is determined that DB08424 and DB08907 have the best chances of acting as multi-kinase inhibitors. The pi-cation interaction with key amino acid residues of both target receptors may responsible for the stronger binding with these kinases. Cumulative 600 ns MD simulation studies validate the binding ability of these compounds. Significantly, the hit compounds resulted higher number of stable conformational state with less atomic movements than the reference compound against both targets. The anti-cancer efficacy of the lead compounds was validated through machine learning-based approaches. These findings suggest that DB08424 and DB08907 might be novel molecules to be explored further experimentally to block the MAPK signaling in lung cancer patients.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  2. Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA III, Prada D, Samet J, Thurston G, Cohen A (2020) Outdoor air pollution and cancer: an overview of the current evidence and public health recommendations. Ca-Cancer J Clin 70(6):460–479. https://doi.org/10.3322/caac.21632

    Article  Google Scholar 

  3. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, Ionescu C (2019) A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers 11(10):1618. https://doi.org/10.3390/cancers11101618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zou B, Zhou XL, Lai SQ, Liu JC (2018) Notch signaling and non-small cell lung cancer. Oncol lett 15(3):3415–3421. https://doi.org/10.3892/ol.2018.7738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chan BA, Hughes BG (2015) Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res 4(1):36–54. https://doi.org/10.3978/j.issn.2218-6751.2014.05.01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jain AS, Prasad A, Pradeep S, Dharmashekar C, Achar RR, Ekaterina S, Victor S, Amachawadi RG, Prasad SK, Pruthvish R, Syed A (2021) Everything old is new again: drug repurposing approach for non-small cell lung cancer targeting MAPK signaling pathway. Front Oncol 11:741326–741341. https://doi.org/10.3389/fonc.2021.741326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yaeger R, Corcoran RB (2019) Targeting alterations in the RAF–MEK pathway. Cancer Discov 9(3):329–341. https://doi.org/10.1158/2159-8290.CD-18-1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flaherty KT, Yasothan U, Kirkpatrick P (2011) Vemurafenib. Nat Rev Drug Discov 10(11):811–812. https://doi.org/10.1038/nrd3579

    Article  CAS  PubMed  Google Scholar 

  9. Rheault TR, Stellwagen JC, Adjabeng GM, Hornberger KR, Petrov KG, Waterson AG, Dickerson SH, Mook RA Jr, Laquerre SG, King AJ, Rossanese OW (2013) Discovery of dabrafenib: a selective inhibitor of Raf kinases with antitumor activity against B-Raf-driven tumors. ACS Med Chem Lett 4(3):358–362. https://doi.org/10.1021/ml4000063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koelblinger P, Thuerigen O, Dummer R (2018) Development of encorafenib for BRAF-mutated advanced melanoma. Curr Opin Oncol 30(2):125–133. https://doi.org/10.1097/CCO.0000000000000426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santarpia L, Lippman SM, El-Naggar AK (2012) Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 16(1):103–119. https://doi.org/10.1517/14728222.2011.645805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang J, Hong Y, Shen J (2015) Combination treatment with perifosine and MEK-162 demonstrates synergism against lung cancer cells in vitro and in vivo. Tumor Biol 36(7):5699–5706. https://doi.org/10.1007/s13277-015-3244-2

    Article  CAS  Google Scholar 

  13. Fung AS, Graham DM, Chen EX, Stockley TL, Zhang T, Le LW, Albaba H, Pisters KM, Bradbury PA, Trinkaus M, Chan M (2021) A phase I study of binimetinib (MEK 162), a MEK inhibitor, plus carboplatin and pemetrexed chemotherapy in non-squamous non-small cell lung cancer. Lung Cancer 157:21–29. https://doi.org/10.1016/j.lungcan.2021.05.021

    Article  CAS  PubMed  Google Scholar 

  14. Whittaker SR, Cowley GS, Wagner S, Luo F, Root DE, Garraway LA (2015) Combined Pan-RAF and MEK inhibition overcomes multiple resistance mechanisms to selective RAF inhibitors. Mol Cancer Ther 14(12):2700–2711. https://doi.org/10.1158/1535-7163.MCT-15-0136-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Juric D, Soria JC, Sharma S, Banerji U, Azaro A, Desai J, Ringeisen FP, Kaag A, Radhakrishnan R, Hourcade-Potelleret F, Maacke H (2014) A phase 1b dose-escalation study of BYL719 plus binimetinib (MEK162) in patients with selected advanced solid tumors. J Clin Oncol. https://doi.org/10.1200/jco.2014.32.15_suppl.9051

    Article  Google Scholar 

  16. Odogwu L, Mathieu L, Blumenthal G, Larkins E, Goldberg KB, Griffin N, Bijwaard K, Lee EY, Philip R, Jiang X, Rodriguez L (2018) FDA approval summary: dabrafenib and trametinib for the treatment of metastatic non-small cell lung cancers harboring BRAF V600E mutations. Oncologist 23(6):740–745. https://doi.org/10.1634/theoncologist.2017-0642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cicenas J, Cicenas E (2016) Multi-kinase inhibitors, AURKs and cancer. Med Oncol 33(5):43–54. https://doi.org/10.1007/s12032-016-0758-4

    Article  CAS  PubMed  Google Scholar 

  18. Raghavendra NM, Pingili D, Kadasi S, Mettu A, Prasad SV (2018) Dual or multi-targeting inhibitors: the next generation anticancer agents. Eur J Med Chem 143:1277–1300. https://doi.org/10.1016/j.ejmech.2017.10.021

    Article  CAS  PubMed  Google Scholar 

  19. Escudier B, Szczylik C, Eisen T, Stadler WM, Schwartz B, Shan M, Bukowski RM (2005) Randomized phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43–9006) in patients with advanced renal cell carcinoma (RCC). J Clin Oncol 23(16_suppl):LBA4510. https://doi.org/10.1200/jco.2005.23.16_suppl.lba4510

    Article  Google Scholar 

  20. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7(10):3129–3140. https://doi.org/10.1158/1535-7163.MCT-08-0013

    Article  CAS  PubMed  Google Scholar 

  21. Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, Gomes DaGama EM, Caldas-Lopes E, Beebe K, Perna F, Hatzi K, Vu LP (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7(11):818–826. https://doi.org/10.1038/nchembio.670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakae S, Kitamura M, Fujiwara D, Sawa M, Shirai T, Fujii I, Tada T (2021) Structure of mitogen-activated protein kinase kinase 1 in the DFG-out conformation. Acta Crystallogr F 77(12):459–464. https://doi.org/10.1107/S2053230X21011687

    Article  CAS  Google Scholar 

  23. Nishiguchi GA, Rico A, Tanner H, Aversa RJ, Taft BR, Subramanian S, Setti L, Burger MT, Wan L, Tamez V, Smith A (2017) Design and discovery of N-(2-methyl-5′-morpholino-6′-((tetrahydro-2 H-pyran-4-yl) oxy)-[3, 3′-bipyridin]-5-yl)-3-(trifluoromethyl) benzamide (RAF709): a potent, selective, and efficacious RAF inhibitor targeting RAS mutant cancers. J Med Chem 60(12):4869–4881. https://doi.org/10.1021/acs.jmedchem.6b01862

    Article  CAS  PubMed  Google Scholar 

  24. Huang T, Karsy M, Zhuge J, Zhong M, Liu D (2013) B-Raf and the inhibitors: from bench to bedside. J Hematol Oncol 6(1):30–39. https://doi.org/10.1186/1756-8722-6-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng Y, Tian H (2017) Current development status of MEK inhibitors. Molecules 22(10):1551. https://doi.org/10.3390/molecules22101551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rolfo C, Caparica R (2016) B-RAF mutation in non-small cell lung cancer: the sleeping beauty is waking up. Transl Lung Cancer Res 5(4):367–369. https://doi.org/10.21037/tlcr.2016.07.04

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xie H, Chen L, Zhang J, Xie X, Qiu K, Fu J (2015) A combined pharmacophore modeling, 3D QSAR and virtual screening studies on imidazopyridines as B-Raf inhibitors. Int J Mol Sci 16(6):12307–12323. https://doi.org/10.3390/ijms160612307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074-D1082. https://doi.org/10.1093/nar/gkx1037

  29. Ahmad S, Bhanu P, Kumar J, Pathak RK (2022) Molecular dynamics simulation and docking analysis of NF-κB protein binding with sulindac acid. Bioinformation 18(3):170–179. https://doi.org/10.6026/97320630018170

    Article  PubMed  PubMed Central  Google Scholar 

  30. Poornima M, Ramanathan K (2019) Discovery of human autophagy initiation kinase ULK1 inhibitors by multi-directional in silico screening strategies. J Recept Signal Transduct Res 39(2):122–133. https://doi.org/10.1080/10799893.2019.1638401

    Article  CAS  Google Scholar 

  31. Muthu Kumar T, Ramanathan K (2022) Revealing the potency of natural compounds as dual kinase blockers by structure-based modeling and extensive MD simulation strategy. J Comput Biophys Chem 21(05):515–528. https://doi.org/10.1142/S273741652250017X

    Article  CAS  Google Scholar 

  32. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44(D1):D1045–D1053. https://doi.org/10.1093/nar/gkv1072

    Article  CAS  PubMed  Google Scholar 

  33. Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389. https://doi.org/10.1021/ci800324m

    Article  CAS  PubMed  Google Scholar 

  34. Wu PK, Park JI (2015) MEK1/2 inhibitors: molecular activity and resistance mechanisms. Semin Oncol 42(6):849–862. https://doi.org/10.1053/j.seminoncol.2015.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pinzi L, Rastelli G (2019) Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 20(18):43. https://doi.org/10.3390/ijms20184331

    Article  CAS  Google Scholar 

  36. Yadav R, Imran M, Dhamija P, Suchal K, Handu S (2021) Virtual screening and dynamics of potential inhibitors targeting RNA binding domain of nucleocapsid phosphoprotein from SARS-CoV-2. J Biomol Struct Dyn 39(12):4433–4448. https://doi.org/10.1080/07391102.2020.1778536

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA (2011) The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins Struct Funct Bioinform 79(10):2794–2812. https://doi.org/10.1002/prot.23106

    Article  CAS  Google Scholar 

  38. Ntie-Kang F, Lifongo LL, Mbah JA, Owono Owono LC, Megnassan E, Mbaze LM, Judson PN, Sippl W, Efange S (2013) In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin. In Silico Pharmacol 1(1):12–23. https://doi.org/10.1186/2193-9616-1-12

    Article  PubMed  PubMed Central  Google Scholar 

  39. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  40. Schüttelkopf AW, Van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D 60(8):1355–1363. https://doi.org/10.1107/S0907444904011679

    Article  CAS  PubMed  Google Scholar 

  41. Gerdes H, Casado P, Dokal A, Hijazi M, Akhtar N, Osuntola R, Rajeeve V, Fitzgibbon J, Travers J, Britton D, Khorsandi S (2021) Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat Commun 12(1):1850–1865. https://doi.org/10.1038/s41467-021-22170-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Al-Jarf R, de Sá AG, Pires DE, Ascher DB (2021) pdCSM-cancer: using graph-based signatures to identify small molecules with anticancer properties. J Chem Inf Model 61(7):3314–3122. https://doi.org/10.1021/acs.jcim.1c00168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pascual R, Almansa C, Plata-Salamán C, Vela JM (2019) A new pharmacophore model for the design of sigma-1 ligands validated on a large experimental dataset. Front pharmacol 10:519. https://doi.org/10.3389/fphar.2019.00519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang N, Kalyanaraman C, Irwin JJ, Jacobson MP (2006) Physics-based scoring of protein−ligand complexes: enrichment of known inhibitors in large-scale virtual screening. J Chem Inf Model 46(1):243–253. https://doi.org/10.1021/ci0502855

    Article  CAS  PubMed  Google Scholar 

  45. Sirous H, Campiani G, Calderone V, Brogi S (2021) Discovery of novel hit compounds as potential HDAC1 inhibitors: the case of ligand-and structure-based virtual screening. Comput Biol Med 137:104808. https://doi.org/10.1016/j.compbiomed.2021.104808

    Article  CAS  PubMed  Google Scholar 

  46. Tripathi SK, Muttineni R, Singh SK (2013) Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors. J Theor Biol 334:87–100. https://doi.org/10.1016/j.jtbi.2013.05.014

    Article  CAS  PubMed  Google Scholar 

  47. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed Engl 42(11):1210–1250. https://doi.org/10.1002/anie.200390319

    Article  CAS  PubMed  Google Scholar 

  48. Loeffler JR, Fernández-Quintero ML, Schauperl M, Liedl KR (2020) STACKED–solvation theory of aromatic complexes as key for estimating drug binding. J Chem Inf Model 60(4):2304–2313. https://doi.org/10.1021/acs.jcim.9b01165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Project CG, Jones CM, Marshall CJ, Springer CJ, Barford D (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6):855–867. https://doi.org/10.1016/S0092-8674(04)00215-6

  50. Chen T, Li M, Liu J (2018) π–π stacking interaction: a nondestructive and facile means in material engineering for bioapplications. Cryst Growth Des 18(5):2765–2683. https://doi.org/10.1021/acs.cgd.7b01503

    Article  CAS  Google Scholar 

  51. Bepari AK, Reza HM (2021) Identification of a novel inhibitor of SARS-CoV-2 3CL-PRO through virtual screening and molecular dynamics simulation. PeerJ 9:e11261. https://doi.org/10.7717/peerj.11261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chin SL, Lu Q, Dane EL, Dominguez L, McKnight CJ, Straub JE, Grinstaff MW (2016) Combined molecular dynamics simulations and experimental studies of the structure and dynamics of poly-amido-saccharides. J Am Chem Soc 138(20):6532–6540. https://doi.org/10.1021/jacs.6b01837

    Article  CAS  PubMed  Google Scholar 

  53. Salo-Ahen OM, Alanko I, Bhadane R, Bonvin AM, Honorato RV, Hossain S, Juffer AH, Kabedev A, Lahtela-Kakkonen M, Larsen AS, Lescrinier E (2020) Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 9(1):71. https://doi.org/10.3390/pr9010071

    Article  CAS  Google Scholar 

  54. Khan RJ, Jha RK, Amera GM, Jain M, Singh E, Pathak A, Singh RP, Muthukumaran J, Singh AK (2021) Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. J Biomol Struct Dyn 39(8):2679–2692. https://doi.org/10.1080/07391102.2020.1753577

    Article  CAS  PubMed  Google Scholar 

  55. Guan S, Wang T, Kuai Z, Qian M, Tian X, Zhang X, Yu Y, Wang S, Zhang H, Li H, Kong W (2017) Exploration of binding and inhibition mechanism of a small molecule inhibitor of influenza virus H1N1 hemagglutinin by molecular dynamics simulation. Sci Rep 7(1):3786. https://doi.org/10.1038/s41598-017-03719-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen J, Wang J, Zhu W (2016) Molecular mechanism and energy basis of conformational diversity of antibody SPE7 revealed by molecular dynamics simulation and principal component analysis. Sci Rep 6(1):36900. https://doi.org/10.1038/srep36900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mittal L, Srivastava M, Kumari A, Tonk RK, Awasthi A, Asthana S (2021) Interplay among structural stability, plasticity, and energetics determined by conformational attuning of flexible loops in PD-1. J Chem Inf Model 61(1):358–384. https://doi.org/10.1021/acs.jcim.0c01080

    Article  CAS  PubMed  Google Scholar 

  58. Cloete R, Akurugu WA, Werely CJ, van Helden PD, Christoffels A (2017) Structural and functional effects of nucleotide variation on the human TB drug metabolizing enzyme arylamine N-acetyltransferase 1. J Mol Graph Model 75:330–339. https://doi.org/10.1016/j.jmgm.2017.04.026

    Article  CAS  PubMed  Google Scholar 

  59. Londhe AM, Gadhe CG, Lim SM, Pae AN (2019) Investigation of molecular details of Keap1-Nrf2 inhibitors using molecular dynamics and umbrella sampling techniques. Molecules 24(22):4085. https://doi.org/10.3390/molecules24224085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Santos CB, Santos KL, Cruz JN, Leite FH, Borges RS, Taft CA, Campos JM, Silva CH (2021) Molecular modeling approaches of selective adenosine receptor type 2A agonists as potential anti-inflammatory drugs. J Biomol Struct Dyn 39(9):3115–3127. https://doi.org/10.1080/07391102.2020.1761878

    Article  CAS  PubMed  Google Scholar 

  61. Youssif BG, Gouda AM, Moustafa AH, Abdelhamid AA, Gomaa HA, Kamal I, Marzouk AA (2022) Design and synthesis of new triarylimidazole derivatives as dual inhibitors of BRAFV600E/p38α with potential antiproliferative activity. J Mol Struct 1253:132218. https://doi.org/10.1016/j.molstruc.2021.132218

    Article  CAS  Google Scholar 

  62. Barry ER, Simov V, Valtingojer I, Venier O (2021) Recent therapeutic approaches to modulate the hippo pathway in oncology and regenerative medicine. Cells 10(10):2715. https://doi.org/10.3390/cells10102715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank VIT management for providing the facility to carry out this research work. Also, we acknowledge the support from Bioinformatics Resources and Applications Facility (BRAF), C-DAC, Pune.

Funding

N/A.

Author information

Authors and Affiliations

Authors

Contributions

RK designed the computational framework. MKT performed the computational work, prepared tables, and figures. MKT, SV, and RK analyzed the data. MKT, SV, and RK contributed to the writing of the manuscript. RK supervised the entire study. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Ramanathan Karuppasamy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5638 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirunavukkarasu, M.K., Veerappapillai, S. & Karuppasamy, R. Computational biophysics approach towards the discovery of multi-kinase blockers for the management of MAPK pathway dysregulation. Mol Divers 27, 2093–2110 (2023). https://doi.org/10.1007/s11030-022-10545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10545-y

Keywords

Navigation