Skip to main content

Advertisement

Log in

Detection of a target protein (GroEl2) in Mycobacterium tuberculosis using a derivative of 1,2,4-triazolethiols

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Herein, we identified a potent lead compound RRA2, within a series of 54 derivatives of 1,2,4-triazolethiols (exhibit good potency as an anti-mycobacterial agents) against intracellular Mycobacterium tuberculosis (Mtb). Compound RRA2 showed significant mycobactericidal activity against active stage Mycobacterium bovis BCG and Mtb with minimum inhibitory concentration (MIC) values of 2.3 and 2.0 µg/mL, respectively. At MIC value, RRA2 compound yielded 0.82 log reduction of colony-forming unit (cfu) against non-replicating Mtb. Furthermore, RRA2 compound was selected for further target identification due to the presence of alkyne group, showing higher selectivity index (> 66.66 ± 0.22, in non-replicating stage). Using “click” chemistry, we synthesized the biotin linker-RRA2 conjugate, purified with HPLC method and confirmed the conjugation of biotin linker-RRA2 complex by HR-MS analysis. Furthermore, we successfully pulled down and identified a specific target protein GroEl2, from Mtb whole-cell extract. Furthermore, computational molecular modeling indicated RRA2 could interact with GroEl2, which explains the structure–activity relationship observed in this study.

Graphical abstract

GroEL-2 identified a potent and specific target protein for RRA 2 compound in whole cell extract of Mtb H37Ra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muñoz-Elías EJ, Timm J et al (2005) Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect Immun 73:546–551. https://doi.org/10.1128/iai.73.1.546-551.2005

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rogerson BJ, Jung Y et al (2006) Expression levels of Mycobacterium tuberculosis antigen-encoding genes versus production levels of antigen-specific T cells during stationary level lung infection in mice. Immunology 118:195–201. https://doi.org/10.1111/j.1365-2567.2006.02355.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McCune RM, Feldmann FM et al (1966) Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J Exp Med 123:445–468. https://doi.org/10.1084/jem.123.3.445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cong F, Cheung AK et al (2012) Chemical genetics-based target identification in drug discovery. Annu Rev Pharmacol Toxicol 52:57–78. https://doi.org/10.1146/annurev-pharmtox-010611-134639

    Article  CAS  PubMed  Google Scholar 

  5. Chaudhary PM, Chavan SR et al (2008) Structural elucidation of propargylated products of 3-substituted-1,2,4-triazole-5-thiols by NMR techniques. Magn Reson Chem 46:1168–1174. https://doi.org/10.1002/mrc.2307

  6. Bellamine A, Lepesheva GI et al (2004) Fluconazole binding and sterol demethylation in three CYP51 isoforms indicate differences in active site topology. J Lipid Res 45:2000–2007. https://doi.org/10.1194/jlr.M400239-JLR200

    Article  CAS  PubMed  Google Scholar 

  7. Deng XQ, Song MX et al (2018) Recent developments on triazole nucleus in anticonvulsant compounds: a review. J Enzyme Inhib Med Chem 33:453–478. https://doi.org/10.1080/14756366.2017.1423068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Slivka MV, Korol NI et al (2020) Fused bicyclic 1,2,4-triazoles with one extra sulfur atom: synthesis, properties, and biological activity. J Heterocycl Chem 57:3236–3254. https://doi.org/10.1002/jhet.4044

    Article  CAS  Google Scholar 

  9. Vanjare BD, Mahajan PG et al (2020) Novel 1,2,4-triazole analogues as mushroom tyrosinase inhibitors: synthesis, kinetic mechanism, cytotoxicity and computational studies. Mol Diversity 118:195–201. https://doi.org/10.1007/s11030-020-10102-5

    Article  CAS  Google Scholar 

  10. Dunford AJ, McLean KJ et al (2007) Rapid P450 Heme Iron Reduction by Laser Photoexcitation of Mycobacterium tuberculosis CYP121 and CYP51B1 analysis of co complexation reactions and reversibility of the p450/p420 equilibrium. J Biol Chem 282:24816–24824. https://doi.org/10.1074/jbc.m702958200

    Article  CAS  PubMed  Google Scholar 

  11. Kharb R, Sharma PC et al (2011) Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 26:1–21. https://doi.org/10.3109/14756360903524304

    Article  CAS  PubMed  Google Scholar 

  12. Pagniez F, Lebouvier N et al (2020) Biological exploration of a novel 1,2,4-triazole-indole hybrid molecule as antifungal agent. J Enzyme Inhib Med Chem 35:398–403. https://doi.org/10.1080/14756366.2019.1705292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaur P, Chawla A (2017) 1,2,4-Triazole: a review of pharmacological activities. Int. Res. J. Pharm. 8:10–29. https://doi.org/10.7897/2230-8407.087112

    Article  CAS  Google Scholar 

  14. Guardiola-Diaz HM, Foster LA et al (2001) Azole-antifungal binding to a novel cytochrome P450 from Mycobacterium tuberculosis: implications for treatment of tuberculosis. Biochem Pharmacol 61:1463–1470. https://doi.org/10.1016/s0006-2952(01)00571-8

    Article  CAS  PubMed  Google Scholar 

  15. Gülerman NN, Dogan HN et al (2001) Synthesis and structure elucidation of some new thioether derivatives of 1,2,4-triazoline-3-thiones and their antimicrobial activities. Farmaco 56:953–958. https://doi.org/10.1016/s0014-827x(01)01167-3

    Article  PubMed  Google Scholar 

  16. Akhtar T, Hameed S et al (2010) Design, synthesis, and urease inhibition studies of some 1,3,4-oxadiazoles and 1,2,4-triazoles derived from mandelic acid. J Enzyme Inhib Med Chem 25:572–576. https://doi.org/10.3109/14756360903389864

    Article  CAS  PubMed  Google Scholar 

  17. Wu J, Liu X et al (2007) Synthesis of novel derivatives of 4-amino-3-(2-furyl)-5-mercapto-1,2,4-triazole as potential HIV-1 NNRTIs. Molecules 12:2003–2016. https://doi.org/10.3390/12082003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moulin A, Demange L et al (2008) Trisubstituted 1,2,4-triazoles as ligands for the ghrelin receptor: on the significance of the orientation and substitution at position 3. Bioorg Med Chem Lett 18:164–168. https://doi.org/10.1016/j.bmcl.2007.10.113

    Article  CAS  PubMed  Google Scholar 

  19. Sarkar D, Deshapande SR et al (2013) 1, 2, 4-Triazole Derivatives and their anti mycobacterial activity. US Patent Appl US. 0060045 A1

  20. Rode ND, Sonawane AD et al (2017) Synthesis, biological evaluation, and molecular docking studies of novel 3-aryl-5-(alkyl-thio)-1H-1,2,4-triazoles derivatives targeting Mycobacterium tuberculosis. Chem Biol Drug Des 90:1206–1214. https://doi.org/10.1111/cbdd.13040

    Article  CAS  PubMed  Google Scholar 

  21. Kong TH, Coates AR et al (1993) Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci USA 90:2608–2612. https://doi.org/10.1073/pnas.90.7.2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stewart GR, Wernisch L et al (2002) Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:3129–3138. https://doi.org/10.1099/00221287-148-10-3129

    Article  CAS  PubMed  Google Scholar 

  23. Monahan IM, Betts J et al (2001) Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147:459–471. https://doi.org/10.1099/00221287-147-2-459

    Article  CAS  PubMed  Google Scholar 

  24. Lewthwaite JC, Coates AR et al (2001) Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 69:7349–7355. https://doi.org/10.1128/IAI.69.12.7349-7355.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Young DB, Garbe TR (1991) Heat shock proteins and antigens of Mycobacterium tuberculosis. Infect Immun 59:3086–3093. https://doi.org/10.1128/IAI.59.9.3086-3093.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naffin-Olivos JL, Georgieva M et al (2014) Mycobacterium tuberculosis Hip1 modulates macrophage responses through proteolysis of GroEL2. PLoS Pathog 10:e1004132–e1004132. https://doi.org/10.1371/journal.ppat.1004132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Georgieva M, Sia JK, Bizzell E, Madan-Lala R, Rengarajan J (2018) Mycobacterium tuberculosis modulates GroEL2 Dendritic Cell Responses. Infect Immun 86:e00387–e00317. https://doi.org/10.1128/IAI.00387-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fong JJ, Sreedhara K et al (2015) Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors Siglec-5 and Siglec-14. The EMBO J. 34:2775–2788. https://doi.org/10.15252/embj.201591407

    Article  CAS  PubMed  Google Scholar 

  29. Washburn A, Abdeen S et al (2019) Dual-targeting GroEL/ES chaperonin and protein tyrosine phosphatase B (PtpB)inhibitors: A polypharmacology strategy for treating Mycobacterium tuberculosis infections. Bioorganic Med Chem Lett 29(13):1665–1672. https://doi.org/10.1016/j.bmcl.2019.04.034

    Article  CAS  Google Scholar 

  30. Khan A, Sarkar D (2008) A simple whole cell based high throughput screening protocol using Mycobacterium bovis BCG for inhibitors against dormant and active tubercle bacilli. J Microbiol Methods 73:62–68. https://doi.org/10.1016/j.mimet.2008.01.015

    Article  CAS  PubMed  Google Scholar 

  31. Gao F, Wang T, Xiao J, Huang G (2019) Antibacterial activity study of 1,2,4-triazole derivatives. Eur J Med Chem 173:274–281. https://doi.org/10.1016/j.ejmech.2019.04.043

    Article  CAS  PubMed  Google Scholar 

  32. Aher RB, Sarkar D (2021) 2D-QSAR modeling and two-fold classification of 1,2,4 triazole derivatives for antitubercular potency against the dormant stage of Mycobacterium tuberculosis. Mol Divers. https://doi.org/10.1007/s11030-021-10254-y

  33. Wayne LG, Sohaskey CD (2001) Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol 55:139–163. https://doi.org/10.1146/annurev.micro.55.1.139

    Article  CAS  PubMed  Google Scholar 

  34. Jackson CJ, Lamb DC et al (2003) Conservation and cloning of CYP51: a sterol 14 alpha-demethylase from Mycobacterium smegmatis. Biochem Biophys Res Commun 301:558–563. https://doi.org/10.1016/s0006-291x(02)03078-4

    Article  CAS  PubMed  Google Scholar 

  35. Poupin P, Ducrocq V, Hallier-Soulier S, Truffaut N (1999) Cloning and characterization of the genes encoding a cytochrome P450 (PipA) involved in piperidine and pyrrolidine utilization and its regulatory protein (PipR) in Mycobacterium smegmatis mc2155. J Bacteriol 181:3419–3426. https://doi.org/10.1128/JB.181.11.3419-3426.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sarkar D, Sarkar S (2012) A method of screening anti-tubercular compound. WIPO Patent Appl WO 2012(123971):A2

    Google Scholar 

  37. Orme I, Tuberculosis Drug Screening P (2001) Search for new drugs for treatment of tuberculosis. Antimicrob Agents Chemother 45:1943–1946. https://doi.org/10.1128/AAC.45.7.1943-1946.2001

    Article  CAS  PubMed  Google Scholar 

  38. Prosser G, Brandenburg J et al (2017) The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition. Microbes Infect 19:177–192. https://doi.org/10.1016/j.micinf.2016.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jakkala K, Ajitkumar P (2019) Hypoxic non-replicating persistent Mycobacterium tuberculosis develops thickened outer layer that helps in restricting rifampicin entry. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02339

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rustad TR, Sherrid AM, Minch KJ, Sherman DR (2009) Hypoxia: a window into Mycobacterium tuberculosis latency. Cell Microbiol 11:1151–1159. https://doi.org/10.1111/j.1462-5822.2009.01325.x

    Article  CAS  PubMed  Google Scholar 

  41. Qamra R, Mande SC (2004) Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J Bacteriol 186:8105–8113. https://doi.org/10.1128/JB.186.23.8105-8113.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang J, Boisvert DC (2003) Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution. J Mol Biol 327:843–855. https://doi.org/10.1016/s0022-2836(03)00184-0

    Article  CAS  PubMed  Google Scholar 

  43. Shahar A, Melamed-Frank M, Kashi Y, Shimon L, Adir N (2011) The dimeric structure of the Cpn60.2 chaperonin of Mycobacterium tuberculosis at 2.8 Å reveals possible modes of function. J Mol Biol 412:192–203. https://doi.org/10.1016/j.jmb.2011.07.026

    Article  CAS  PubMed  Google Scholar 

  44. Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069. https://doi.org/10.1128/IAI.64.6.2062-2069.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sarkar D (2014) Nitrite-reductase (nirb) as potential anti-tubercular target and a method to detect the severity of tuberculosis disease. WIPO Patent Appl WO. 2014:132263

    Google Scholar 

  46. McDonough KA, Kress Y, Bloom BR (1993) Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 61:2763–2773. https://doi.org/10.1128/iai.61.7.2763-2773.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meldal M, Tornøe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015. https://doi.org/10.1021/cr0783479

    Article  CAS  PubMed  Google Scholar 

  48. Hong V, Presolski SI, Ma C, Finn MG (2009) Analysis and Optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew Chem Int Ed 48:9879–9883. https://doi.org/10.1002/anie.200905087

    Article  CAS  Google Scholar 

  49. Dan VM, Vinodh JS et al (2020) Molecular networking and whole-genome analysis aid discovery of an angucycline that inactivates mTORC1/C2 and induces programmed cell death. ACS Chem Biol 15:780–788. https://doi.org/10.1021/acschembio.0c00026

    Article  CAS  PubMed  Google Scholar 

  50. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143. https://doi.org/10.1016/0003-2697(84)90782-6

    Article  CAS  PubMed  Google Scholar 

  51. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  52. Vila A, Tallman KA et al (2008) Identification of protein targets of 4-hydroxynonenal using click chemistry for ex vivo biotinylation of azido and alkynyl derivatives. Chem Res Toxicol 21:432–444. https://doi.org/10.1021/tx700347w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramdas V, Talwar R et al (2020) Discovery of potent, selective, and state-dependent NaV1.7 inhibitors with robust oral efficacy in pain models: structure activity relationship and optimization of chroman and indane aryl sulfonamides. J Med Chem. 63:6107–6133. https://doi.org/10.1021/acs.jmedchem.0c00361

    Article  CAS  PubMed  Google Scholar 

  54. Silva JC, Denny R et al (2006) Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: a sweet tale. Mol Cell Proteomics 5:589–607. https://doi.org/10.1074/mcp.M500321-MCP200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to AstraZeneca, Bangalore, MTCC Chandigarh, India, and Dr. Shekhar Mande, NCCS, Pune (DG CSIR), for providing M. bovis BCG (ATCC 35745), M. smegmatis (ATCC 607) and, M. tuberculosis H37Ra (ATCC 25177) and purified GroEl1 and GroEl2 from M.tuberculosis H37Rv, respectively. Thanks to the Rebecca L Cooper Medical Research Foundation and Director, National Chemical Laboratory, Pune, India, for providing financial support.

Funding

Sarvesh K Soni is the recipient of research grants from Rebecca L Cooper Medical Research Foundation (PG2018098) and ATSE- Priming grant PG181. Sagar Swami has been awarded Senior Research Fellowship (SRF) File no: 31/011(0983)2017/EMR-01) from the Council of Scientific & Industrial Research (CSIR) New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

Dhiman Sarkar has conceived the experiments and provided an interpretation of the results. Sampa Sarkar, Sagar Swami, Arshad Khan, Sarvesh Soni and Jessica Holien performed the experiments and analysed the data. Sarvesh Soni and Jessica Holien assisted with analysis and interpretation. Dhiman Sarkar, Sampa Sarkar, Sarvesh Soni and Sagar Swami wrote the final manuscript draft.

Corresponding author

Correspondence to Dhiman Sarkar.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 972 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Swami, S., Soni, S.K. et al. Detection of a target protein (GroEl2) in Mycobacterium tuberculosis using a derivative of 1,2,4-triazolethiols. Mol Divers 26, 2535–2548 (2022). https://doi.org/10.1007/s11030-021-10351-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10351-y

Keywords

Navigation