Skip to main content
Log in

New ursolic acid derivatives bearing 1,2,3-triazole moieties: design, synthesis and anti-inflammatory activity in vitro and in vivo

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In order to discover novel anti-inflammatory agents, three series of compounds obtained by appending 1,2,3-triazole moieties on ursolic acid were designed and synthesized. All compounds have been screened for their anti-inflammatory activity by using an ear edema model. The potent anti-inflammatory compound was subjected to in vitro cyclooxygenase COX-1/COX-2 inhibition assays. In general, the derivatives were found to be potent anti-inflammatory activity. Especially, the compound 11b exhibited the strongest activity of all of the compounds prepared, with 82.81% inhibition after intraperitoneal administration, which was better than celecoxib as a positive control. Molecular docking results unclose the rationale for the interaction of the compound 11b with COX-2 enzyme. Further studies revealed that compound 11b exhibited effective COX-2 inhibitory activity, with half-maximal inhibitor concentration (IC50) value of 1.16 µM and selectivity index (SI = 64.66) value close to that of celecoxib (IC50 = 0.93 µM, SI = 65.47). Taken together, these results could suggest a promising chemotype for development of new COX-2-targeting anti-inflammatory agent.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Similar content being viewed by others

References

  1. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867. https://doi.org/10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147:S232-240. https://doi.org/10.1038/sj.bjp.0706400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Demir Y, Duran HE, Durmaz L, Taslimi P, Beydemir S, Gulçin I (2020) The influence of some nonsteroidal anti-inflammatory drugs on metabolic enzymes of aldose reductase, sorbitol dehydrogenase, and α-glycosidase: a perspective for metabolic disorders. Appl BiochemI Biotech 190:437–447. https://doi.org/10.1007/s12010-019-03099-7

    Article  CAS  Google Scholar 

  4. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875. https://doi.org/10.1126/science.294.5548.1871

    Article  CAS  PubMed  Google Scholar 

  5. Pairet M, Engelhardt G (1996) Distinct isoforms (COX-1 and COX-2) of cyclooxygenase: possible physiological and therapeutic implications. Fundam Clin Pharmacol 10:1–17. https://doi.org/10.1111/j.1472-8206.1996.tb00144.x

    Article  CAS  PubMed  Google Scholar 

  6. Penning TD, Tally JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, AndersonGD BEG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC (1997) Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J Med Chem 40:1347–1365. https://doi.org/10.1021/jm960803q

    Article  CAS  PubMed  Google Scholar 

  7. Tally JJ, Bertenshaw SR, Brown DL, Carter JS, Kellogg MS, Koboldt CM, Yuan J, Zhang YY, Seibert K (2000) N-[[(5-methyl-3-phenylisoxazol-4-yl)-phenyl]sulfonyl]propanamide, sodium salt, parecoxib sodium: a potent and selective inhibitor of COX-2 for parenteral administration. J Med Chem 43:1661–1663. https://doi.org/10.1021/jm000069h

    Article  CAS  Google Scholar 

  8. Liu MC, Yang SJ, Jin LH, Hu DY, Xue W, Song BA, Yang S (2012) Synthesis and cytotoxicity of novel ursolic acid derivatives containing an acyl piperazine moiety. Eur J Med Chem 58:128–135. https://doi.org/10.1016/j.ejmech.2012.08.048

    Article  CAS  PubMed  Google Scholar 

  9. Wu J, Ma S, Zhang TY, Wei ZY, Wang HM, Guo FY, Zheng CJ, Piao HR (2019) Synthesis and biological evaluation of ursolic acid derivatives containing an aminoguanidine moiety. Med Chem Res 28:959–973. https://doi.org/10.1007/s00044-019-02349-x

    Article  CAS  Google Scholar 

  10. Checker R, Sandur SK, Sharma D, Patwardhan RS, Jayakumar S, Kohli V, Sethi G, Aggarwal BB, Sainis KB (2012) Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-AT. PLoS ONE 7:e31318. https://doi.org/10.1371/journal.pone.0031318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Csuk R, Niesen-Barthel A, Schafer R, Barthel A, Al-Harrasi A (2015) Synthesis and antitumor activity of ring a modified 11-keto-β-boswellic acid derivatives. Eur J Med Chem 92:700–711. https://doi.org/10.1016/j.ejmech.2015.01.039

    Article  CAS  PubMed  Google Scholar 

  12. Ma LY, Wang B, Pang LP, Zhang M, Wang SQ, Zheng YC, Shao KP, Xue DQ, Liu HM (2015) Design and synthesis of novel 1,2,3-triazole-pyrimidine-urea hybrids as potential anticancer agents. Bioorg Med Chem Lett 25:1124–1128. https://doi.org/10.1016/j.bmcl.2014.12.087

    Article  CAS  PubMed  Google Scholar 

  13. Shafi S, Alam MM, Mulakayala N, Mulakayala C, Vanaja J, Kalle AM, Pallu R, Alam MS (2012) Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: their anti-inflammatory and anti-nociceptive activities. Eur J Med Chem 49:324–333. https://doi.org/10.1016/j.ejmech.2012.01.032

    Article  CAS  PubMed  Google Scholar 

  14. Vanga NR, Kota A, Sistla R, Uppuluri M (2017) Synthesis and anti-inflammatory activity of novel triazole hybrids of (+)-usnic acid, the major dibenzofuran metabolite of the lichen Usnea longissima. Mol Divers 21:273–282. https://doi.org/10.1007/s11030-016-9716-5

    Article  CAS  PubMed  Google Scholar 

  15. Kinfe HH, Belay YH, Joseph JS, Mukwevho E (2013) Evaluation of the Influence of thiosemicarbazone-triazole hybrids on genes implicated in lipid oxidation and accumulation as potential anti-obesity agents. Bioorg Med Chem Lett 23:5275–5278. https://doi.org/10.1016/j.bmcl.2013.08.028

    Article  CAS  PubMed  Google Scholar 

  16. Liu XK, Ye BJ, Wu Y, Lin ZH, Zhao YQ, Piao HR (2011) Synthesis and anti-tumor evaluation of panaxadiol derivatives. Eur J Med Chem 46:1997–2002. https://doi.org/10.1016/j.ejmech.2011.02.022

    Article  CAS  PubMed  Google Scholar 

  17. Liu XK, Ye BJ, Wu Y, Nan JX, Lin ZH, Piao HR (2012) Synthesis and antitumor activity of dehydroepiandrosterone derivatives on Es-2, A549, and HepG2 cells in vitro. Chem Biol Drug Des 79:523–529. https://doi.org/10.1111/j.1747-0285.2011.01311.x

    Article  CAS  PubMed  Google Scholar 

  18. Wei ZY, Chi KQ, Wang KS, Wu J, Liu LP, Piao HR (2018) Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg Med Chem Lett 28:1797–1803. https://doi.org/10.1016/j.bmcl.2018.04.021

    Article  CAS  PubMed  Google Scholar 

  19. Yu B, Qi PP, Shi XJ, Huang RL, Guo H, Zheng YC, Yu DQ, Liu HM (2016) Efficient synthesis of new antiproliferative steroidal hybrids using the molecular hybridization approach. Eur J Med Chem 117:241–255. https://doi.org/10.1016/j.ejmech.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  20. Kant R, Singh V, Nath G, Awasthi SK, Agarwal A (2016) Design, synthesis and biological evaluation of ciprofloxacin tethered bis-1,2,3-triazole conjugates as potent antibacterial agents. Eur J Med Chem 124:218–228. https://doi.org/10.1016/j.ejmech.2016.08.031

    Article  CAS  PubMed  Google Scholar 

  21. Zheng XJ, Li CS, Cui MY, Song ZW, Bai XQ, Liang CW, Wang HY, Zhang TY (2020) Synthesis, biological evaluation of benzothiazole derivatives bearing a 1,3,4-oxadiazole moiety as potential anti-oxidant and anti-inflammatory agents. Bioorg Med Chem Lett 30:127237. https://doi.org/10.1016/j.bmcl.2020.127237

    Article  CAS  PubMed  Google Scholar 

  22. Rao PNP, Amini M, Li HY, Habeeb AG, Knaus EE (2003) Design, synthesis, and biological evaluation of 6-substituted-3-(4-methanesulfonylphenyl)-4-phenylpyran-2-ones: a novel class of diarylheterocyclic selective cyclooxygenase-2 inhibitors. J Med Chem 46:4872–4882. https://doi.org/10.1021/jm0302391

    Article  CAS  Google Scholar 

  23. Jr BR, Fink RC, Li D, McMichael M, Tower CM, Smith RD, Alberte RS (2009) Pro-inflammatory enzymes, cyclooxygenase 1, cyclooxygenase 2, and 5-lipooxygenase, inhibited by stabilized rice bran extracts. J Med Food 12:615–623. https://doi.org/10.1089/jmf.2008.0133

    Article  CAS  PubMed  Google Scholar 

  24. Kandemir FM, Kucukler S, Caglayan C, Gur C, Batil AA, Gulçin I (2017) Therapeutic effects of silymarin and naringin on methotrexateinduced nephrotoxicity in rats: biochemical evaluation of anti-inflammatory, antiapoptotic, and antiautophagic properties. J Food Biochem 41:e12398. https://doi.org/10.1111/jfbc.12398

    Article  CAS  Google Scholar 

  25. Abdellatif KRA, Abdelall EKA, Lamie PF, Labib MB, El-Nahaas E, Abdelhakeem MM (2020) New pyrazole derivatives possessing amino/methanesulphonyl pharmacophore with good gastric safety profile: design, synthesis, cyclooxygenase inhibition, anti-inflammatory activity and histopathological studies. Bioorg Chem 95:103540. https://doi.org/10.1016/j.bioorg.2019.103540

    Article  CAS  PubMed  Google Scholar 

  26. Khan A, Diwan A, Thabet HK, Imran M (2020) Synthesis of novel N-substitutedphenyl-6-oxo-3-phenylpyridazine derivatives as cyclooxygenase-2 inhibitors. Drug Dev Res 81:573–584. https://doi.org/10.1002/ddr.21655

    Article  CAS  PubMed  Google Scholar 

  27. Dawood DH, Batran RZ, Farghaly TA, Khedr MA, Abdulla MM (2015) New coumarin derivatives as potent selective COX-2 inhibitors: synthesis, anti-inflammatory, QSAR, and molecular modeling studies. Arch Pharm 348:875–888. https://doi.org/10.1002/ardp.201500274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Jilin Province (No.20190201148JC); the Department of Education of Jilin Province (No.JJKH20200461KJ and JJKH20210495KJ); and the Public Welfare Project of Zhoushan Municipal Science and Technology Bureau, Zhejiang Province (No. 2020C31044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Hai Zhao or Si-Mei Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, TY., Li, CS., Cao, LT. et al. New ursolic acid derivatives bearing 1,2,3-triazole moieties: design, synthesis and anti-inflammatory activity in vitro and in vivo. Mol Divers 26, 1129–1139 (2022). https://doi.org/10.1007/s11030-021-10236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10236-0

Keywords

Navigation