Skip to main content

Advertisement

Log in

Simultaneous ultrasound- and microwave-assisted one-pot ‘click’ synthesis of 3-formyl-indole clubbed 1,2,3-triazole derivatives and their biological evaluation

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An environment friendly, high yielding, promising one-pot protocol for the click reaction of N-propargyl-3-formylindole 2(a–b), chloroacetic acid/ester 3(a–b) and sodium azide, leading to the formation of 3-formyl-indole clubbed 1,4-disubstituted-1,2,3-triazole derivatives 4(a–b), 5(a–b) and 6(a–f) aided by CuI catalyst accomplished under acceleration of simultaneous ultrasound and microwave irradiation in a very short reaction time has been described. Further, acid derivative 4(a–b) is subjected to acid–amine coupling reaction with secondary amine (p–t) in the presence of HATU to afford 6(p–t) and 7(p–t). The perspective of this protocol is to get rid of the hectic preparation and handling of organic azide which are generated in situ. Consequently, this protocol blossoms the click process by making it environment benign, user-friendly, safe and clean technique. All the synthesized compounds have been preliminarily screen for their in vitro antimicrobial activity against a panel of pathogenic strains. The majority of compounds possess noticeably inhibitory action against E. Coli, S. Typhi, P. Aeruginosa, C. tetani, S. aureus and B. subtillis. Among all compounds, 6p and 7q exhibit excellent inhibitory action against E.Coli and P. Aeruginosa strain, respectively, as compared to standard drug. One compound 5b shows remarkable potency against fungal strain. Molecular docking study was carried out to understand binding of compound with protein. In silico ADME prediction was carried out to check physicochemical properties of synthesized compound.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dheer D, Singh V, Shankar R (2017) Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg Chem 71:30–54. https://doi.org/10.1016/j.bioorg.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  2. Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D (2017) The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discovery Today 22(10):1572–1581. https://doi.org/10.1016/j.drudis.2017.05.014

    Article  CAS  PubMed  Google Scholar 

  3. Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA (2008) Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med Res Rev 28(2):278–308. https://doi.org/10.1002/med.20107

    Article  CAS  PubMed  Google Scholar 

  4. Minvielle MJ, Bunders CA, Melander C (2013) Indole–triazole conjugates are selective inhibitors and inducers of bacterial biofilms. MedChemComm 4(6):916–919. https://doi.org/10.1039/C3MD00064H

    Article  CAS  PubMed  Google Scholar 

  5. Suryapeta S, Papigani N, Banothu V, Dubey PK, Mukkanti K, Pal S (2020) Synthesis, biological evaluation, and docking study of a series of 1,4-disubstituted 1,2,3-triazole derivatives with an indole-triazole-peptide conjugate. 57 (8):3126–3141. https://doi.org/10.1002/jhet.4020

  6. Bunders C, Cavanagh J, Melander C (2011) Flustramine inspired synthesis and biological evaluation of pyrroloindoline triazole amides as novel inhibitors of bacterial biofilms. Org Biomol Chem 9(15):5476–5481. https://doi.org/10.1039/C1OB05605K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gill C, Jadhav G, Shaikh M, Kale R, Ghawalkar A, Nagargoje D, Shiradkar M (2008) Clubbed [1,2,3] triazoles by fluorine benzimidazole: a novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Bioorg Med Chem Lett 18(23):6244–6247. https://doi.org/10.1016/j.bmcl.2008.09.096

    Article  CAS  PubMed  Google Scholar 

  8. Kaushik CP, Kumar K, Lal K, Narasimhan B, Kumar A (2016) Synthesis and antimicrobial evaluation of 1,4-disubstituted 1,2,3-triazoles containing benzofused N-heteroaromatic moieties. Monatshefte für Chemie—Chemical Monthly 147(4):817–828. https://doi.org/10.1007/s00706-015-1544-2

    Article  CAS  Google Scholar 

  9. Corrales RCNR, de Souza NB, Pinheiro LS, Abramo C, Coimbra ES, Da Silva AD (2011) Thiopurine derivatives containing triazole and steroid: synthesis, antimalarial and antileishmanial activities. Biomed Pharmacother 65(3):198–203. https://doi.org/10.1016/j.biopha.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  10. Chauhan S, Verma V, Kumar D, Kumar A (2019) Synthesis, antimicrobial evaluation and docking study of triazole containing triaryl-1H-imidazole. Synth Commun 49(11):1427–1435. https://doi.org/10.1080/00397911.2019.1600192

    Article  CAS  Google Scholar 

  11. Rogers SA, Melander C (2008) Construction and screening of a 2-aminoimidazole library identifies a small molecule capable of inhibiting and dispersing bacterial biofilms across order, class, and phylum. Angew Chem Int Ed 47(28):5229–5231. https://doi.org/10.1002/anie.200800862

    Article  CAS  Google Scholar 

  12. Deswal S, Naveen TRK, Ghule Vikas D, Lal K, Kumar A (2020) 5-Fluoro-1H-indole-2,3-dione-triazoles- synthesis, biological activity, molecular docking, and DFT study. J Mol Struct 1209:127982. https://doi.org/10.1016/j.molstruc.2020.127982

    Article  CAS  Google Scholar 

  13. Kaushik CP, Luxmi R, Singh D, Kumar A (2017) Synthesis and antimicrobial evaluation of ester-linked 1,4-disubstituted 1,2,3-triazoles with a furyl/thienyl moiety. Mol Diversity 21(1):137–145. https://doi.org/10.1007/s11030-016-9710-y

    Article  CAS  Google Scholar 

  14. Awolade P, Cele N, Kerru N, Singh P (2020) Synthesis, antimicrobial evaluation, and in silico studies of quinoline—1H-1,2,3-triazole molecular hybrids. Mol Diversity. https://doi.org/10.1007/s11030-020-10112-3

    Article  Google Scholar 

  15. Aarjane M, Slassi S, Tazi B, Maouloua M, Amine A (2020) Synthesis, antibacterial evaluation and molecular docking studies of novel series of acridone- 1,2,3-triazole derivatives. Struct Chem 31(4):1523–1531. https://doi.org/10.1007/s11224-020-01512-0

    Article  CAS  Google Scholar 

  16. Phatak PS, Sathe BP, Dhumal ST, Rehman NNMA, Dixit PP, Khedkar VM, Haval KP (2019) Synthesis, Antimicrobial Evaluation, and Docking Studies of Substituted Acetylphenoxymethyl-triazolyl-N-phenylacetamides. 56 (7):1928–1938. https://doi.org/10.1002/jhet.3568

  17. Lal K, Kaushik CP, Kumar A (2015) Antimicrobial evaluation, QSAR and docking studies of amide-linked 1,4-disubstituted 1,2,3-bistriazoles. Med Chem Res 24(8):3258–3271. https://doi.org/10.1007/s00044-015-1378-9

    Article  CAS  Google Scholar 

  18. Naveen, Kumar Tittal R, Vikas GD, Rani P, Lal K, Kumar A (2020) Synthesis, antimicrobial activity, molecular docking and dft study: aryl-carbamic acid 1-benzyl-1h-[1,2,3]triazol-4-ylmethyl Esters. 5 (22):6723–6729. https://doi.org/10.1002/slct.202001547

  19. Naveen TRK, Ghule VD, Yadav P, Lal K, Kumar A (2020) Synthesis, antimicrobial potency with in silico study of Boc-leucine-1,2,3-triazoles. Steroids 161:108675. https://doi.org/10.1016/j.steroids.2020.108675

    Article  CAS  PubMed  Google Scholar 

  20. Thirumurugan P, Matosiuk D, Jozwiak K (2013) Click chemistry for drug development and diverse chemical-biology applications. Chem Rev 113(7):4905–4979. https://doi.org/10.1021/cr200409f

    Article  CAS  PubMed  Google Scholar 

  21. Huisgen R (1961) Proceedings of the Chemical Society. October 1961. Proceedings of the Chemical Society (October):357–396. https://doi.org/10.1039/PS9610000357

  22. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599. https://doi.org/10.1002/1521-3773(20020715)41:14%3c2596::AID-ANIE2596%3e3.0.CO;2-4

    Article  CAS  Google Scholar 

  23. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064. https://doi.org/10.1021/jo011148j

    Article  CAS  PubMed  Google Scholar 

  24. Finn MG, Fokin VV (2010) Click chemistry: function follows form. Chem Soc Rev 39(4):1231–1232. https://doi.org/10.1039/C003740K

    Article  CAS  PubMed  Google Scholar 

  25. Hein JE, Fokin VV (2010) Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides. Chem Soc Rev 39(4):1302–1315. https://doi.org/10.1039/B904091A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kappe CO, Van der Eycken E (2010) Click chemistry under non-classical reaction conditions. Chem Soc Rev 39(4):1280–1290. https://doi.org/10.1039/B901973C

    Article  CAS  PubMed  Google Scholar 

  27. Appukkuttan P, Dehaen W, Fokin VV, Van der Eycken E (2004) A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(i)-catalyzed three-component reaction. Org Lett 6(23):4223–4225. https://doi.org/10.1021/ol048341v

    Article  CAS  PubMed  Google Scholar 

  28. Cintas P, Barge A, Tagliapietra S, Boffa L, Cravotto G (2010) Alkyne–azide click reaction catalyzed by metallic copper under ultrasound. Nat Protoc 5(3):607–616. https://doi.org/10.1038/nprot.2010.1

    Article  CAS  PubMed  Google Scholar 

  29. Vecchi A, Melai B, Marra A, Chiappe C, Dondoni A (2008) Microwave-enhanced ionothermal cuaac for the synthesis of glycoclusters on a calix[4]arene platform. J Org Chem 73(16):6437–6440. https://doi.org/10.1021/jo800954z

    Article  CAS  PubMed  Google Scholar 

  30. Cravotto G, Fokin VV, Garella D, Binello A, Boffa L, Barge A (2010) Ultrasound-promoted copper-catalyzed azide−alkyne cycloaddition. J Comb Chem 12(1):13–15. https://doi.org/10.1021/cc900150d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tu NP, Hochlowski JE, Djuric SW (2012) Ultrasound-assisted click chemistry in continuous flow. Mol Diversity 16(1):53–58. https://doi.org/10.1007/s11030-011-9331-4

    Article  CAS  Google Scholar 

  32. Kritchenkov AS, Egorov AR, Dysin AP, Volkova OV, Zabodalova LA, Suchkova EP, Kurliuk AV, Shakola TV (2019) Ultrasound-assisted Cu(I)-catalyzed azide-alkyne click cycloaddition as polymer-analogous transformation in chitosan chemistry. High antibacterial and transfection activity of novel triazol betaine chitosan derivatives and their nanoparticles. Int J Biol Macromol 137:592–603. https://doi.org/10.1016/j.ijbiomac.2019.06.190

    Article  CAS  PubMed  Google Scholar 

  33. Luche JL (1998) Synthetic Organic Sonochemistry. 1 edn. Springer US. https://doi.org/10.1007/978-1-4899-1910-6

  34. Tagliapietra S, Calcio Gaudino E, Cravotto G (2015) 33 - The use of power ultrasound for organic synthesis in green chemistry. In: Gallego-Juárez JA, Graff KF (eds) Power Ultrasonics. Woodhead Publishing, Oxford, pp 997–1022. https://doi.org/10.1016/B978-1-78242-028-6.00033-8

  35. Bräse S, Gil C, Knepper K, Zimmermann V (2005) Organic azides: an exploding diversity of a unique class of compounds. 44 (33):5188-5240https://doi.org/10.1002/anie.200400657

  36. Scriven EFV, Turnbull K (1988) Azides: their preparation and synthetic uses. Chem Rev 88(2):297–368. https://doi.org/10.1021/cr00084a001

    Article  CAS  Google Scholar 

  37. L’Abbe G (1969) Decomposition and addition reactions of organic azides. Chem Rev 69(3):345–363. https://doi.org/10.1021/cr60259a004

    Article  CAS  Google Scholar 

  38. Li J, Liu H, Meng F, Yan L, Shi Y, Zhang Y, Gu Q (2018) Microwave-assisted synthesis of new 1,2,3-triazoles bearing an isoxazole ring by the azide-alkyne cycloaddition click chemistry. Chem Res Chin Univ 34(2):197–202. https://doi.org/10.1007/s40242-018-7298-8

    Article  CAS  Google Scholar 

  39. Prasad P, Kalola AG, Patel MP (2018) Microwave assisted one-pot synthetic route to imidazo[1,2-a]pyrimidine derivatives of imidazo/triazole clubbed pyrazole and their pharmacological screening. New J Chem 42(15):12666–12676. https://doi.org/10.1039/C8NJ00670A

    Article  CAS  Google Scholar 

  40. Prasad P, Shobhashana PG, Patel MP An efficient synthesis of 4H-pyrano quinolinone derivatives catalysed by a versatile organocatalyst tetra-n-butylammonium fluoride and their pharmacological screening. Royal Soc Open Sci 4(11):170764. https://doi.org/10.1098/rsos.170764

  41. Ladani GG, Patel MP (2015) Novel 1,3,4-oxadiazole motifs bearing a quinoline nucleus: synthesis, characterization and biological evaluation of their antimicrobial, antitubercular, antimalarial and cytotoxic activities. New J Chem 39(12):9848–9857. https://doi.org/10.1039/C5NJ02566D

    Article  CAS  Google Scholar 

  42. Ladani GG, Patel MP (2015) Regioselective one-pot three-component synthesis of quinoline based 1,2,4-triazolo[1,5-a]quinoline derivatives. RSC Adv 5(94):76943–76948. https://doi.org/10.1039/C5RA15560F

    Article  CAS  Google Scholar 

  43. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  44. Philip N, James HRS (1959) Indole-3-carboxaldehyde. Organic Syntheses 39. https://doi.org/10.15227/orgsyn.039.0030

  45. Brabez N, Lynch RM, Xu L, Gillies RJ, Chassaing G, Lavielle S, Hruby VJ (2011) Design, synthesis, and biological studies of efficient multivalent melanotropin ligands: tools toward melanoma diagnosis and treatment. J Med Chem 54(20):7375–7384. https://doi.org/10.1021/jm2009937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. St. Amant AH, Engbers C, Hudson RHE, (2013) A solid-phase CuAAC strategy for the synthesis of PNA containing nucleobase surrogates. Artificial DNA: PNA & XNA 4(1):4–10. https://doi.org/10.4161/adna.23982

    Article  Google Scholar 

  47. Łoczechin A, Séron K, Barras A, Giovanelli E, Belouzard S, Chen Y-T, Metzler-Nolte N, Boukherroub R, Dubuisson J, Szunerits S (2019) Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces 11(46):42964–42974. https://doi.org/10.1021/acsami.9b15032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Dijk M, Mustafa K, Dechesne AC, van Nostrum CF, Hennink WE, Rijkers DTS, Liskamp RMJ (2007) Synthesis of peptide-based polymers by microwave-assisted cycloaddition backbone polymerization. Biomacromol 8(2):327–330. https://doi.org/10.1021/bm061010g

    Article  CAS  Google Scholar 

  49. Sreedhar B, Surendra Reddy P (2007) Sonochemical synthesis of 1,4-disubstituted 1,2,3-Triazoles in aqueous medium. Synth Commun 37(5):805–812. https://doi.org/10.1080/00397910601133599

    Article  CAS  Google Scholar 

  50. Cintas P, Martina K, Robaldo B, Garella D, Boffa L, Cravotto GJCoCCC, (2007) Improved protocols for microwave-assisted Cu (I)-catalyzed Huisgen 1, 3-dipolar cycloadditions. Collect Czech Chem Commun 72(8):1014–1024. https://doi.org/10.1135/cccc20071014

    Article  CAS  Google Scholar 

  51. Worrell BT, Malik JA, Fokin VV (2013) Direct evidence of a dinuclear copper intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions. 340 (6131):457–460. https://doi.org/10.1126/science.1229506%JScience

  52. Valeur E, Bradley M (2009) Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 38(2):606–631. https://doi.org/10.1039/B701677H

    Article  CAS  PubMed  Google Scholar 

  53. Trott O, Olson AJ (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. 31 (2):455–461. https://doi.org/10.1002/jcc.21334

  54. van de Waterbeemd H, Smith DA, Jones BC (2001) Lipophilicity in PK design: methyl, ethyl, futile. J Comput Aided Mol Des 15(3):273–286. https://doi.org/10.1023/A:1008192010023

    Article  PubMed  Google Scholar 

  55. Daina A, Zoete V (2016) A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. Chem MedChem 11(11):1117–1121. https://doi.org/10.1002/cmdc.201600182

    Article  CAS  Google Scholar 

  56. NCCLS (National Committee for Clinical Laboratory Standards) Twelfth Information Supplement, ISBN 1–56238–454–6 M100-S12 (M7), 2002.

  57. AutoDock Tools, version 1.5.6 rc2 (2010) Stefano Forte. Molecular Graphics Laboratory, Department of Molecular Biology, The Scripps Research Institute. http://mgltools.scripps.edu

  58. Discovery Studio v4.0 client (2014) Accelrys Software Inc

Download references

Acknowledgements

This research was supported by the Department of Chemistry, Sardar Patel University. All the authors are grateful to UGC, New Delhi for UGC-CPEPA Phase-II program sponsored under award letter no. F. No. 1–14/2002-2016(NS/PE) dated April 28, 2016, as well as UGC-CAS, Phase-II sponsored under award letter no. F-540/5/CASII/2018 (SAP-I) dated July 25, 2018, for the assistance in general. We also thankful to Microcare Laboratory, Surat, for the biological screening of the compounds reported herein. One of the authors (Jaydeep A Mokariya) is grateful to the CSIR, New Delhi, for a CSIR-JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish P. Patel.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5.68 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokariya, J.A., Kalola, A.G., Prasad, P. et al. Simultaneous ultrasound- and microwave-assisted one-pot ‘click’ synthesis of 3-formyl-indole clubbed 1,2,3-triazole derivatives and their biological evaluation. Mol Divers 26, 963–979 (2022). https://doi.org/10.1007/s11030-021-10212-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10212-8

Keywords

Navigation