Skip to main content
Log in

Synthesis and fungicidal activity of methyl (E)-1-(2-((E)-2-methoxy-1-(methoxyimino)-2-oxoethyl)benzyl)-2-(1-arylidene)hydrazine-1-carboxylates †‡

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

To discover novel strobilurin fungicides, a series of methyl (E)-1-(2-((E)-2-methoxy-1-(methoxy-imino)-2-oxoethyl)benzyl)-2-(1-arylidene)hydrazine-1-carboxylates were designed based on the principle of biologically active splicing and the receptor target structure. The fungicidal activity results show that this class of compounds has excellent fungicidal activity, especially against S. sclerotiorum (Lib.) deBary, wheat white powder and puccinia polysora. The result of structure–activity relationship implied that the introduction of t-butyl in the side chain facilitates the hydrophobic interaction between the compound and the active site. The electrostatic effect of the substituents on the benzene ring is also a key factor affecting such activities. Among them, the compound I-1 not only showed a fungicidal effect comparable to that of kresoxim-methyl in vivo, but also had an excellent inhibitory effect on spore germination of P. oryzae Cav in vitro, which indicated that it could be used as a potential commercial fungicide for plant disease control.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Venkataravanappa V, Saha S, Mahesh B, Rai AB (2014) Strobilurins : a new generation of natural fungicides. Everyman’s Sci 48(5):352–357

    Google Scholar 

  2. N-z H (2013) Varieties markets formulations and applications of strobilurins fungicides (II). Xiandai Nongyao. 12(4):6-11 15. https://doi.org/10.3969/j.issn.1671-5284.2013.04.002

    Article  CAS  Google Scholar 

  3. N-z H (2013) Varieties markets formulations and applications of strobilurins fungicides (I). Xiandai Nongyao 12(3):6-11 21. https://doi.org/10.3969/j.issn.1671-5284.2013.03.002

    Article  CAS  Google Scholar 

  4. Zhang Z, Huang L, Shulmeister VM, Chi Y-I, Kim KK, Hung L-W, Crofts AR, Berry EA, Kim S-H (1998) Electron transfer by domain movement in cytochrome bc1. Nature (London) 392(6677):677–684. https://doi.org/10.1038/33612

    Article  CAS  Google Scholar 

  5. Xia D, Yu C-A, Kim H, Xia J-Z, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1997) Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science (Washington, D C) 277(5322):60–66. https://doi.org/10.1126/science.277.5322.60

    Article  CAS  Google Scholar 

  6. Cao Y, Cai Z, Zhang W, Du X (2019) Synthesis and herbicidal activity of novel β-methoxyacrylate derivatives containing a substituted phenylpyridine moiety. Chem Res Chin Univ 35(6):1008–1011. https://doi.org/10.1007/s40242-019-9128-z

    Article  CAS  Google Scholar 

  7. Wu S, Miao W, Wang T, Fang J (2015) Synthesis and Herbicidal Activities of 2-Cyanoacrylates with 4-(6-Chloropyridin-3-yl)methoxy-benzylamine moieties. Chin J Org Chem 35(7):1484. https://doi.org/10.6023/cjoc201412025

    Article  CAS  Google Scholar 

  8. Thibault L, Delorme R (2005) Acaricides in crop protection. Phytoma 586:38–41

    CAS  Google Scholar 

  9. Yu Z-Y, Huang R, Xiao H, Sun W-F, Shan Y-J, Wang B, Zhao T-T, Dong B, Zhao Z-H, Liu X-L, Wang S-Q, Yang R-F, Luo Q-L, Cong Y-W (2010) Fluacrypyrim, a novel STAT3 activation inhibitor, induces cell cycle arrest and apoptosis in cancer cells harboring constitutively-active STAT3. Int J Cancer 127(6):1259–1270. https://doi.org/10.1002/ijc.25169

    Article  CAS  PubMed  Google Scholar 

  10. Hu Z-B, Luo H-A, Wang X-G, Huang M-Z, Huang L, Pang H-L, Mao C-H, Pei H, Huang C-Q, Sun J, Liu P-L, Liu A-P (2014) Synthesis and evaluation of O-benzyl oxime-ether derivatives containing β-methoxyacrylate moiety for insecticidal and fungicidal activities. Bull Korean Chem Soc 35(4):1073–1076. https://doi.org/10.5012/bkcs.2014.35.4.1073

    Article  CAS  Google Scholar 

  11. Zhao P-L, Wang F, Zhang M-Z, Liu Z-M, Huang W, Yang G-F (2008) Synthesis, fungicidal, and insecticidal activities of β-methoxyacrylate-containing N-acetylpyrazoline derivatives. J Agric Food Chem 56(22):10767–10773. https://doi.org/10.1021/jf802343p

    Article  CAS  PubMed  Google Scholar 

  12. Anke T (1998) Strobilurins: from natural substances to market products. Oekosystemanal Umweltforsch 5 (Biochemie/Biotechnologie im Dienste der Umweltforschung):175–184

  13. Chai B, Wang S, Yu W, Li H, Song C, Xu Y, Liu C, Chang J (2013) Synthesis of novel strobilurin-pyrimidine derivatives and their antiproliferative activity against human cancer cell lines. Bioorg Med Chem Lett 23(12):3505–3510. https://doi.org/10.1016/j.bmcl.2013.04.045

    Article  CAS  PubMed  Google Scholar 

  14. Matic S, Gilardi G, Varveri M, Garibaldi A, Gullino ML (2019) Molecular diversity of alternaria spp from leafy vegetable crops, and their sensitivity to azoxystrobin and boscalid. Phytopathol Mediterr 58(3):519–533. https://doi.org/10.14601/phyto-10882

    Article  CAS  Google Scholar 

  15. Esser L, Yu C-A, Xia D (2014) Structural basis of resistance to anti-cytochrome bc1 complex inhibitors: implication for drug improvement. Curr Pharm Des 20(5):704–724. https://doi.org/10.2174/138161282005140214163327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsuzaki Y, Kiguchi S, Suemoto H, Iwahashi F (2020) Antifungal activity of metyltetraprole against the existing QoI-resistant isolates of various plant pathogenic fungi: metyltetraprole against QoI-R isolates. Pest Manag Sci 76(5):1743–1750. https://doi.org/10.1002/ps.5697

    Article  CAS  PubMed  Google Scholar 

  17. Esser L, Quinn B, Li Y-F, Zhang M, Elberry M, Yu L, Yu C-A, Di X (2004) Crystallographic studies of quinol oxidation site inhibitors: a modified classification of inhibitors for the cytochrome bc1 complex. J Mol Biol 341(1):281–302. https://doi.org/10.1016/j.jmb.2004.05.065

    Article  CAS  PubMed  Google Scholar 

  18. Jia C, Yuan X, Liu X, Zhang L, Xiao Y, Fu B, Li J-Q, Qin Z (2019) Synthesis and fungicidal activity of (E)-Methyl 2-(2-((1-cyano-2-hydrocarbylidenehydrazinyl)methyl)phenyl)-2-(methoxyimino)acetates. Pest Manage Sci 75(12):3160–3166. https://doi.org/10.1002/ps.5432

    Article  CAS  Google Scholar 

  19. Dwivedi DK, Sahu A, Dighade SJ, Agrawal RK (2020) Design, synthesis, and antimicrobial evaluation of some nifuroxazide analogs against nosocomial infection. J Heterocycl Chem: ahead of print. https://doi.org/10.1002/jhet.3891

  20. Zhang Z, Cai Q, Xue J, Qin J, Liu J, Du Y (2019) Co-crystal formation of antibiotic nitrofurantoin drug and melamine co-former based on a vibrational spectroscopic study. Pharmaceutics 11(2):56. https://doi.org/10.3390/pharmaceutics11020056

    Article  CAS  PubMed Central  Google Scholar 

  21. Zuma NH, Smit FJ, Seldon R, Aucamp J, Jordaan A, Warner DF, N’Da DD (2020) Single-step synthesis and in vitro anti-mycobacterial activity of novel nitrofurantoin analogues. Bioorg Chem 96:103587. https://doi.org/10.1016/j.bioorg.2020.103587

    Article  CAS  PubMed  Google Scholar 

  22. Guo Y, Yan Y-Y, Yang C, Yu X, Zhi X-Y, Xu H (2012) Regioselective synthesis of fraxinellone-based hydrazone derivatives as insecticidal agents. Bioorg Med Chem Lett 22(17):5384–5387. https://doi.org/10.1016/j.bmcl.2012.07.058

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Yang Y, Xu H, Wan S, Luo D, Xie K (2018) Carbazochrome sodium sulfonate pharmaceutical composition having good stability and high safety, and its preparation method and application in preparation of hemostatic drugs CN108938626A

  24. Zhu X-L, Zhang R, Wu Q-Y, Song Y-J, Wang Y-X, Yang J-F, Yang G-F (2019) Natural product neopeltolide as a cytochrome bc1 complex inhibitor: mechanism of action and structural modification. J Agric Food Chem 67(10):2774–2781. https://doi.org/10.1021/acs.jafc.8b06195

    Article  CAS  PubMed  Google Scholar 

  25. Paxton JD (1991) Assays for antifungal activity. Methods Plant Biochem. 6:33–46

    CAS  Google Scholar 

  26. Yao TT, Xiao DX, Li ZS, Cheng JL, Fang SW, Du YJ, Zhao JH, Dong XW, Zhu GN (2017) Design, synthesis, and fungicidal evaluation of novel pyrazole-furan and pyrazole-pyrrole carboxamide as succinate dehydrogenase inhibitors. J Agr Food Chem 65(26):5397–5403. https://doi.org/10.1021/acs.jafc.7b01251

    Article  CAS  Google Scholar 

  27. Stierand K, Maass PC, Rarey M (2006) Molecular complexes at a glance: automated generation of two-dimensional complex diagrams. Bioinformatics 22(14):1710–1716. https://doi.org/10.1093/bioinformatics/btl150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present work was supported by grants from the National Key Research and Development Plan (2018YFD0200103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelian Liu.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Jia, C., Yin, F. et al. Synthesis and fungicidal activity of methyl (E)-1-(2-((E)-2-methoxy-1-(methoxyimino)-2-oxoethyl)benzyl)-2-(1-arylidene)hydrazine-1-carboxylates †‡. Mol Divers 26, 801–813 (2022). https://doi.org/10.1007/s11030-021-10187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10187-6

Keywords

Navigation