Skip to main content
Log in

One-pot synthesis of propargylamines using magnetic mesoporous polymelamine formaldehyde/zinc oxide nanocomposite as highly efficient, eco-friendly and durable nanocatalyst: optimization by DOE approach

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Magnetic mesoporous polymelamine formaldehyde nanocomposite-incorporating ZnO nanoparticles were successfully synthesized using solvothermal and sol–gel methods. Fourier-transform infrared spectrometry (FT-IR), X-ray diffraction, Brunauer–Emmett–Teller, vibrating sample magnetometer, thermogravimetric analysis, elemental analysis, transmission electron microscopy and field emission scanning electron microscopy techniques were then utilized for evaluation of nanocomposites. The as-prepared nanocomposite can be used as heterogeneous nanocatalyst with remarkable performance for A3 coupling reaction toward one-pot synthesis of propargylamine and its derivatives under solvent-less condition. In order to maximize the product yield, the variables, i.e., reaction time, temperature and catalyst amount, were optimized by using a statistical approach. The synthesized nanocomposite can be easily separated from the reaction medium and reused over and over, without significant changes in its catalytic activity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dickerson R, Kondragunta S, Stenchikov G, Civerolo K, Doddridge B, Holben B (1997) The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 278:827–830. https://doi.org/10.1126/science.278.5339.827

    Article  CAS  PubMed  Google Scholar 

  2. Masui T, Yamamoto M, Sakata T, Mori H, Adachi G-y (2000) Synthesis of BN-coated CeO2 fine powder as a new UV blocking material. J Mater Chem 10:353–357. https://doi.org/10.1039/A906583K

    Article  CAS  Google Scholar 

  3. Mora-Sero I, Bisquert J, Fabregat-Santiago F, Garcia-Belmonte G, Zoppi G, Durose K, Proskuryakov Y, Oja I, Belaidi A, Dittrich T (2006) Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano Lett 6:640–650. https://doi.org/10.1021/nl052295q

    Article  CAS  PubMed  Google Scholar 

  4. Wang Z, Mahoney C, Yan J, Lu Z, Ferebee R, Luo D, Bockstaller MR, Matyjaszewski K (2016) Preparation of well-defined poly (styrene-co-acrylonitrile)/ZnO hybrid nanoparticles by an efficient ligand exchange strategy. Langmuir 32:13207–13213. https://doi.org/10.1021/acs.langmuir.6b03827

    Article  CAS  PubMed  Google Scholar 

  5. Sahoo GP, Samanta S, Bhui DK, Pyne S, Maity A, Misra A (2015) Hydrothermal synthesis of hexagonal ZnO microstructures in HPMC polymer matrix and their catalytic activities. J Mol Liq 212:665–670. https://doi.org/10.1016/j.molliq.2015.10.019

    Article  CAS  Google Scholar 

  6. Sun J, Chen L (2017) Superparamagnetic POT/Fe3O4 nanoparticle composites with supported Au nanoparticles as recyclable high-performance nanocatalysts. Mater Today Chem 5:43–51. https://doi.org/10.1016/j.mtchem.2017.06.001

    Article  Google Scholar 

  7. Jiang Y-F, Yuan C-Z, Xie X, Zhou X, Jiang N, Wang X, Imran M, Xu A-W (2017) A novel magnetically recoverable Ni-CeO2–x/Pd nanocatalyst with superior catalytic performance for hydrogenation of styrene and 4-nitrophenol. ACS Appl Mater Interfaces 9:9756–9762. https://doi.org/10.1021/acsami.7b00293

    Article  CAS  PubMed  Google Scholar 

  8. Grünert W, Gies H, Muhler M, Polarz S, Lehmann CW, Großmann D, van den Berg M, Tkachenko OP, De Toni A, Sinev I (2013) Metal–supported catalysts encapsulated in mesoporous solids: challenges and opportunities of a model concept. Phys Status Solidi B 250:1081–1093. https://doi.org/10.1002/pssb.201248454

    Article  CAS  Google Scholar 

  9. Liu J (2016) Catalysis by supported single metal atoms. ACS Catal 7:34–59. https://doi.org/10.1021/acscatal.6b01534

    Article  CAS  Google Scholar 

  10. Tan MX, Zhang Y, Ying JY (2013) Mesoporous poly (melamine–formaldehyde) solid sorbent for carbon dioxide capture. Chemsuschem 6:1186–1190. https://doi.org/10.1002/cssc.201300107

    Article  CAS  PubMed  Google Scholar 

  11. Hassanpour A, Khanmiri RH, Abolhasani J (2015) ZnO nanoparticles as an efficient, heterogeneous, reusable, and ecofriendly catalyst for one-pot, three-component synthesis of 3, 4-dihydropyrimidin-2 (1 H)-(thio) one derivatives in water. Synth Commun 45:727–733. https://doi.org/10.1080/00397911.2014.987350

    Article  CAS  Google Scholar 

  12. Hosseini-Sarvari M, Etemad S (2008) Nanosized zinc oxide as a catalyst for the rapid and green synthesis of β-phosphono malonates. Tetrahedron 64:5519–5523. https://doi.org/10.1016/j.tet.2008.03.095

    Article  CAS  Google Scholar 

  13. Hosseini-Sarvari M, Sharghi H, Etemad S (2008) Nanocrystalline ZnO for Knoevenagel condensation and reduction of the carbon, carbon double bond in conjugated alkenes. Helv Chim Acta 91:715–724. https://doi.org/10.1002/hlca.200890072

    Article  CAS  Google Scholar 

  14. Lakshmi Kantam M, Kumar K, Sridhar C (2005) Nanocrystalline ZnO as an efficient heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles. Adv Synth Catal 347:1212–1214. https://doi.org/10.1002/adsc.200505011

    Article  CAS  Google Scholar 

  15. Hosseini-Sarvari M, Tavakolian M (2012) Preparation, characterization, and catalysis application of nano-rods zinc oxide in the synthesis of 3-indolyl-3-hydroxy oxindoles in water. Appl Catal A Gen 441:65–71. https://doi.org/10.1016/j.apcata.2012.07.009

    Article  CAS  Google Scholar 

  16. Abaszadeh M, Seifi M, Asadipour A (2015) Ultrasound promotes one-pot synthesis of 1, 4-dihydropyridine and imidazo [1, 2-a] quinoline derivatives, catalyzed by ZnO nanoparticles. Res Chem Intermed 41:5229–5238. https://doi.org/10.1007/s11164-014-1624-7

    Article  CAS  Google Scholar 

  17. Azarifar A, Nejat-Yami R, Azarifar D (2013) Nano-ZnO: an efficient and reusable catalyst for one-pot synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-diones and pyrazolo [1, 2-a][1, 2, 4] triazole-1, 3-diones. J Iran Chem Soc 10:297–306. https://doi.org/10.1007/s13738-012-0159-3

    Article  CAS  Google Scholar 

  18. Goswami P (2009) Dually activated organo-and nano-cocatalyzed synthesis of coumarin derivatives. Synth Commun 39:2271–2278. https://doi.org/10.1080/00397910802654708

    Article  CAS  Google Scholar 

  19. Hosseini-Sarvari M (2011) An efficient and eco-friendly nanocrystalline zinc oxide catalyst for one-pot, three component synthesis of new ferrocenyl aminophosphonic esters under solvent-free condition. Catal Lett 141:347–355. https://doi.org/10.1007/s10562-010-0489-7

    Article  CAS  Google Scholar 

  20. Paul S, Bhattacharyya P, Das AR (2011) One-pot synthesis of dihydropyrano [2, 3-c] chromenes via a three component coupling of aromatic aldehydes, malononitrile, and 3-hydroxycoumarin catalyzed by nano-structured ZnO in water: a green protocol. Tetrahedron Lett 52:4636–4641. https://doi.org/10.1016/j.tetlet.2011.06.101

    Article  CAS  Google Scholar 

  21. Sadjadi S, Eskandari M (2013) Ultrasonic assisted synthesis of imidazo [1, 2-a] azine catalyzed by ZnO nanorods. Ultrason Sonochem 20:640–643. https://doi.org/10.1016/j.ultsonch.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  22. Sachdeva H, Saroj R (2013) ZnO nanoparticles as an efficient, heterogeneous, reusable, and ecofriendly catalyst for four-component one-pot green synthesis of pyranopyrazole derivatives in water. Sci World J. https://doi.org/10.1155/2013/680671

    Article  Google Scholar 

  23. Weber L (2002) The application of multi-component reactions in drug discovery. Curr Med Chem 9:2085–2093. https://doi.org/10.2174/0929867023368719

    Article  CAS  PubMed  Google Scholar 

  24. Bieber LW, da Silva MF (2004) Mild and efficient synthesis of propargylamines by copper-catalyzed Mannich reaction. Tetrahedron Lett 45:8281–8283. https://doi.org/10.1016/j.tetlet.2004.09.079

    Article  CAS  Google Scholar 

  25. Sanders KB, Thomas AJ, Pavia MR, Davis RE, Coughenour LL, Myers SL, Fisher S, Moos WH (1992) Cholinergic agents: aldehyde, ketone, and oxime analogues of the muscarinic agonist UH5. Bioorg Med Chem Lett 2:803–808. https://doi.org/10.1016/S0960-894X(00)80535-1

    Article  CAS  Google Scholar 

  26. Dulle J, Thirunavukkarasu K, Mittelmeijer-Hazeleger MC, Andreeva DV, Shiju NR, Rothenberg G (2013) Efficient three-component coupling catalysed by mesoporous copper–aluminum based nanocomposites. Green Chem 15:1238–1243. https://doi.org/10.1039/C3GC36607C

    Article  CAS  Google Scholar 

  27. He Y, Lv M-f, Cai C (2012) A simple procedure for polymer-supported N-heterocyclic carbene silver complex via click chemistry: an efficient and recyclable catalyst for the one-pot synthesis of propargylamines. Dalton Trans 41:12428–12433. https://doi.org/10.1039/C2DT31609A

    Article  CAS  PubMed  Google Scholar 

  28. Huo X, Liu J, Wang B, Zhang H, Yang Z, She X, Xi P (2013) A one-step method to produce graphene–Fe3O4 composites and their excellent catalytic activities for three-component coupling of aldehyde, alkyne and amine. J Mater Chem A 1:651–656. https://doi.org/10.1039/C2TA00485B

    Article  CAS  Google Scholar 

  29. Namitharan K, Pitchumani K (2010) Nickel-catalyzed solvent-free three-component coupling of aldehyde, alkyne and amine. Eur J Org Chem 2010:411–415. https://doi.org/10.1002/ejoc.200901084

    Article  CAS  Google Scholar 

  30. Mercury JR, De Aza A, Pena P (2005) Synthesis of CaAl2O4 from powders: particle size effect. J Eur Ceram Soc 25:3269–3279. https://doi.org/10.1016/j.jeurceramsoc.2004.06.021

    Article  CAS  Google Scholar 

  31. Mandić V, Kurajica S (2015) The influence of solvents on sol–gel derived calcium aluminate. Mater Sci Semicond Process 38:306–313. https://doi.org/10.1016/j.mssp.2015.01.004

    Article  CAS  Google Scholar 

  32. Manikandan A, Vijaya JJ, Kennedy LJ, Bououdina M (2013) Microwave combustion synthesis, structural, optical and magnetic properties of Zn1−xSrxFe2O4 nanoparticles. Ceram Int 39:5909–5917. https://doi.org/10.1016/j.ceramint.2013.01.012

    Article  CAS  Google Scholar 

  33. Nayebzadeh H, Saghatoleslami N, Tabasizadeh M (2016) Optimization of the activity of KOH/calcium aluminate nanocatalyst for biodiesel production using response surface methodology. J Taiwan Inst Chem Eng 68:379–386. https://doi.org/10.1016/j.jtice.2016.09.041

    Article  CAS  Google Scholar 

  34. Kumar J, Bansal A (2013) Photocatalytic degradation in annular reactor: modelization and optimization using computational fluid dynamics (CFD) and response surface methodology (RSM). JECE 1:398–405. https://doi.org/10.1016/j.jece.2013.06.002

    Article  CAS  Google Scholar 

  35. Tan MX, Sum YN, Ying JY, Zhang Y (2013) A mesoporous poly-melamine-formaldehyde polymer as a solid sorbent for toxic metal removal. Energy Environ Sci 6:3254–3259. https://doi.org/10.1039/C3EE42216J

    Article  CAS  Google Scholar 

  36. Li J, Li Q, Li L-s, Xu L (2017) Removal of perfluorooctanoic acid from water with economical mesoporous melamine-formaldehyde resin microsphere. Chem Eng J 320:501–509. https://doi.org/10.1016/j.cej.2017.03.073

    Article  CAS  Google Scholar 

  37. Song Y, Ma R, Jiao C, Hao L, Wang C, Wu Q, Wang Z (2018) Magnetic mesoporous polymelamine-formaldehyde resin as an adsorbent for endocrine disrupting chemicals. Microchim Acta 185:19. https://doi.org/10.1007/s00604-017-2593-5

    Article  CAS  Google Scholar 

  38. Wang X, Wang J, Jiao C, Hao L, Wu Q, Wang C, Wang Z (2018) Preparation of magnetic mesoporous poly-melamine-formaldehyde composite for efficient extraction of chlorophenols. Talanta 179:676–684. https://doi.org/10.1016/j.talanta.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  39. Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732. https://doi.org/10.1021/ja01864a025

    Article  CAS  Google Scholar 

  40. Saad A, Vard C, Abderrabba M, Chehimi MM (2017) Triazole/triazine-functionalized mesoporous silica as a hybrid material support for palladium nanocatalyst. Langmuir 33:7137–7146. https://doi.org/10.1021/acs.langmuir.7b01247

    Article  CAS  PubMed  Google Scholar 

  41. Akkaya R, Ulusoy U (2008) Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2+, UO22+, and Th4+. J Hazard Mater 151:380–388. https://doi.org/10.1016/j.jhazmat.2007.05.084

    Article  CAS  PubMed  Google Scholar 

  42. Wang W, Wang A (2009) Preparation, characterization and properties of superabsorbent nanocomposites based on natural guar gum and modified rectorite. Carbohydr Polym 77(4):891–897. https://doi.org/10.1016/j.carbpol.2009.03.012

    Article  CAS  Google Scholar 

  43. Gilja V, Vrban I, Mandić V, Žic M, Hrnjak-Murgić Z (2018) Preparation of a PANI/ZnO composite for efficient photocatalytic degradation of acid blue. Polymers 10(9):940. https://doi.org/10.3390/polym10090940

    Article  CAS  PubMed Central  Google Scholar 

  44. Bazant P, Sedlacek T, Kuritka I, Podlipny D, Holcapkova P (2018) Synthesis and effect of hierarchically structured Ag-ZnO hybrid on the surface antibacterial activity of a propylene-based elastomer blends. Materials 11:363. https://doi.org/10.3390/ma11030363

    Article  CAS  PubMed Central  Google Scholar 

  45. Sun D, Zou Q, Wang Y, Wang Y, Jiang W, Li F (2014) Controllable synthesis of porous Fe3O4@ ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6:6557–6562. https://doi.org/10.1039/C3NR06797A

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Yang L, Zhang J, Wang C, Li Q (2014) Preparation and characterization of chitosan–poly (vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions. Chem Eng J 251:404–412. https://doi.org/10.1016/j.cej.2014.04.089

    Article  CAS  Google Scholar 

  47. Elhampour A, Malmir M, Kowsari E, Nemati F (2016) Ag-doped nano magnetic γ-Fe2O3@ DA core–shell hollow spheres: an efficient and recoverable heterogeneous catalyst for A 3 and KA 2 coupling reactions and [3 + 2] cycloaddition. RSC Adv 6:96623–96634. https://doi.org/10.1039/C6RA18810A

    Article  CAS  Google Scholar 

  48. Shi L, Tu Y-Q, Wang M, Zhang F-M, Fan C-A (2004) Microwave-promoted three-component coupling of aldehyde, alkyne, and amine via C–H activation catalyzed by copper in water. Org Lett 6:1001–1003. https://doi.org/10.1021/ol049936t

    Article  CAS  PubMed  Google Scholar 

  49. Sadjadi S, Heravi MM, Malmir M (2018) Green bio-based synthesis of Fe2O3@ SiO2-IL/Ag hollow spheres and their catalytic utility for ultrasonic-assisted synthesis of propargylamines and benzo [b] furans. Appl Organomet Chem 32:e4029. https://doi.org/10.1002/aoc.4029

    Article  CAS  Google Scholar 

  50. Sadjadi S, Malmir M, Heravi M (2017) A green approach to the synthesis of Ag doped nano magnetic γ-Fe2O 3@SiO2-CD core–shell hollow spheres as an efficient and heterogeneous catalyst for ultrasonic-assisted A3 and KA 2 coupling reactions. RSC Adv 7:36807–36818. https://doi.org/10.1039/C7RA04635A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Semnan University Research Council for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firouzeh Nemati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1593 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahamat, Z., Nemati, F. & Elhampour, A. One-pot synthesis of propargylamines using magnetic mesoporous polymelamine formaldehyde/zinc oxide nanocomposite as highly efficient, eco-friendly and durable nanocatalyst: optimization by DOE approach. Mol Divers 24, 691–706 (2020). https://doi.org/10.1007/s11030-019-09977-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09977-w

Keywords

Navigation