Skip to main content
Log in

Three-component synthesis of benzo[b][1,5]thiazepines via coupling–addition–cyclocondensation sequence

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

2,4-Disubstituted benzo[b][1,5]thiazepines represent nonfluorescent intense yellow chromophores and are readily synthesized from acid chlorides, terminal alkynes, and ortho-amino thiophenols by a consecutive one-pot three-component Sonogashira coupling–Michael addition–cyclocondensation sequence under mild conditions in good yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bariwal JB, Upadhyay KD, Manvar AT, Trivedi JC, Singh JS, Jain KS, Shah AK (2008) 1,5-Benzothiazepine, a versatile pharmacophore: a review. Eur J Med Chem 43: 2279–2290. doi:10.1016/j.ejmech.2008.05.035

    Article  CAS  PubMed  Google Scholar 

  2. Mane RA, Ingle DB (1982) Synthesis and biological activity of some new 1,5-benzothiazepines containing thiazole moiety: 2-aryl-4-(4-methyl-2-substituted-aminothiazol-5-yl)-2,3-dihydro-1,5-benzothiazepines. Indian J Chem Sect B 21: 973–974

    Google Scholar 

  3. Jadhav KP, Ingle DB (1982) Synthesis of 2,4-diaryl-2,3-dihydro-1,5-benzothiazepines and their 1,1-dioxides as antibacterial agents. Indian J Chem Sect B 22: 180–182

    Google Scholar 

  4. Attia A, Abdel-Salam OI, Abo-Ghalia MH, Amr AE (1995) Chemical and biological reactivity of newly synthesized 2-chloro-6-ethoxy-4-acetylpyridine. Egypt J Chem 38: 543–554

    CAS  Google Scholar 

  5. Reddy RJ, Ashok D, Sarma PN (1993) Synthesis of 4,6-bis(2’-substituted-2′,3′-dihydro-1,5-benzothiazepin-4′-yl)resorcinols as potential antifeedants. Indian J Chem Sect B 32: 404–406

    Google Scholar 

  6. Satyanarayana K, Rao MNA (1993) Synthesis of 3-[4-[2,3-dihydro-2-(substituted aryl)-1,5-benzothiazepin-4-yl]phenyl]sydnones as potential antiinflammatory agents. Indian J Pharm Sci 55: 230–233

    CAS  Google Scholar 

  7. De Sarro G, Chimirri A, De Sarro A, Gitto R, Grasso S, Zappala M (1995) 5H-[1,2,4]Oxadiazolo[5,4-d][1,5]benzothiazepines as anticonvulsant agents in DBA/2 mice. Eur J Med Chem 30: 925–929. doi:10.1016/0223-5234(96)88311-5

    Article  CAS  Google Scholar 

  8. Swellem RH, Allam YA, Nawwar GAM (1999) Cinnamoylacetonitrile in heterocyclic synthesis, Part 7. Simple synthesis of benzothiazepines, pyrones and oxazolopyridine. Z Naturforsch B 54: 1197–1201

    CAS  Google Scholar 

  9. Dubey PK, Naidu A, Kumar CR, Reddy PVVP (2003) Preparation of 4-(1-alkylbenz[d]imidazol-2-yl)-2-phenyl-2,3-dihydrobenzo[b][1,4]thiazepines. Indian J Chem Sect B 42: 1701–1705

    Google Scholar 

  10. Lévai A (1986) Synthesis of benzothiazepines (review). Chem Heterocycl Comp 22: 1161–1170. doi:10.1007/BF00471794

    Article  Google Scholar 

  11. Lévai A (2000) Synthesis and chemical transformation of 1,5-benzothiazepines. J Heterocycl Chem 37: 199–214

    Article  Google Scholar 

  12. Ried W, Marx W (1957) Über heterocyclische Siebenringsysteme, VIII. Synthesen Kondensierter Gliedriger Heterocyclen mit 1 Stickstoff- und 1 Schwefelatom. Chem Ber 90: 2683–2687. doi:10.1002/cber.19570901139

    Article  CAS  Google Scholar 

  13. Stephens WD, Field L (1959) A seven-membered heterocycle from O-aminobenzenethiol and chalcone. J Org Chem 24: 1576. doi:10.1021/jo01092a610

    Article  CAS  Google Scholar 

  14. Lévai A, Bognar R (1976) Oxazepines and thiazepines, II. Synthesis of 3-dihydro-2,4-diphenyl-1,5-benzothiazepines by the reaction of 2-aminothiophenol with chalcones substituted in ring B. Acta Chim Acad Sci Hung 88: 293–300

    Google Scholar 

  15. Lévai A, Bognar R (1977) Oxazepines and thiazepines, III. Synthesis of 3-dihydro-2,4-diphenyl-1,5-benzothiazepines by the reaction of 2-aminothiophenol with chalcones substituted in ring A. Acta Chim Acad Sci Hung 92: 415–419

    Google Scholar 

  16. Lévai A, Bognar R, Kajtar J (1980) Oxazepines and thiazepines. VII. Synthesis and circular dichroism of 2, 3-dihydro-2,4-diphenyl-1,5-benzothiazepine glycosides. Acta Chim Acad Sci Hung 103: 27–32

    Google Scholar 

  17. Duddeck H, Kaiser M, Lévai A (1985) Oxazepine und Thiazepine, XVI. 1H- und 13C-NMR-Untersuchungen zur Struktur von Benzothiazepinon-Derivaten. Liebigs Ann Chem 869–876. doi:10.1002/jlac.198519850424

  18. Aryaa K, Dandia A (2008) The expedient synthesis of 1,5-benzothiazepines as a family of cytotoxic drugs. Bioorg Med Chem Lett 18: 114–119. doi:10.1016/j.bmcl.2007.11.002

    Article  Google Scholar 

  19. Ried W, König E (1972) Reaktionen von Acetylenketonen mit nucleophilen Agenzien vom Typ des o-Phenylendiamins, o-Amino-thiophenols und N1-disubstituierten Hydrazins. Liebigs Ann Chem 755: 24–31. doi:10.1002/jlac.19727550105

    Article  CAS  Google Scholar 

  20. Nakhamanovich AS, Glotova TE, Skvortsova GG, Komarova TN, Skorobogatova VI, Mansurov YA (1982) Bull Acad Sci USSR Chem Ser 31: 1221–1224

    Article  Google Scholar 

  21. Blitzke T, Sicker D, Wilde H (1995) Diethyl 2-oxopent-3-ynedioate: synthesis and first cyclizations of a novel, reactive alkyne. Synthesis 236–238. doi:10.1055/s-1995-3898

  22. Cabarrocas G, Rafel S, Ventura M, Villalgordo JM (2000) A new approach toward the stereoselective synthesis of novel quinolyl glycines: synthesis of the enantiomerically pure quinolyl- β-amino alcohol precursors. Synlett 595–598. doi:10.1055/s-2000-6625

  23. Cabarrocas G, Ventura M, Maestro M, Mahia J, Villalgordo JM (2001) Synthesis of novel optically pure quinolyl-β-amino alcohol derivatives from 2-amino thiophenol and chiral α-acetylenic ketones and their IBX-mediated oxidative cleavage to N-Boc quinolyl carboxamides. Tetrahedron-Asymmetr 12: 1851–1863. doi:10.1016/S0957-4166(01)00308-1

    Article  CAS  Google Scholar 

  24. Nagarapu L, Ravirala N, Akkewar D (2001) Benzothiazepine fused heterocycles IV: a convenient synthesis of benzo[b][1,5]thiazepines using MCM-41(H) zeolite. Heterocycl Commun 7: 237–242

    CAS  Google Scholar 

  25. Müller TJJ, D’Souza DM (2008) Diversity oriented syntheses of functional π-systems by multi-component and domino reactions. Pure Appl Chem 80: 609–620. doi:10.1351/pac200880030609

    Article  Google Scholar 

  26. Müller TJJ (2007) Diversity-oriented synthesis of chromophores by combinatorial strategies and multi-component reactions. In: Müller TJJ, Bunz UHF (eds) Functional organic materials. Syntheses, strategies, and applications. Wiley-Vch, Weinberg, p 179

    Google Scholar 

  27. Schreiber SL, Burke MD (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 43: 46–58. doi:10.1002/anie.200300626

    Article  Google Scholar 

  28. Burke MD, Berger EM, Schreiber SL (2003) Generating diverse skeletons of small molecules combinatorially. Science 302: 613–618. doi:10.1126/science.1089946

    Article  CAS  PubMed  Google Scholar 

  29. Arya P, Chou DTH, Baek MG (2001) Diversity-based organic synthesis in the era of genomics and proteomics. Angew Chem Int Ed 40: 339–346. doi:10.1002/1521-3773(20010119)40:2<339::AID-ANIE339>3.0.CO;2-J

    Article  CAS  Google Scholar 

  30. Cox B, Denyer JC, Binnie A, Donnelly MC, Evans B, Green DVS, Lewis JA, Mander TH, Merritt AT, Valler MJ, Watson SP (2000) Application of high-throughput screening techniques to drug discovery. Prog Med Chem 37: 83–133

    Article  CAS  PubMed  Google Scholar 

  31. Schreiber SL (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287: 1964–1969. doi:10.1126/science.287.5460.1964

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, J, Bienayme, H (eds) (2005) Multicomponent reactions. Wiley-VCH, Weinheim

    Google Scholar 

  33. D’Souza DM, Müller TJJ (2007) Multi-component syntheses of heterocycles by transition metal catalysis. Chem Soc Rev 36: 1095–1108. doi:10.1039/b608235c

    Article  PubMed  Google Scholar 

  34. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106: 17–89. doi:10.1021/cr0505728

    Article  PubMed  Google Scholar 

  35. Orru RVA, de Greef M (2003) Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis 1471–1499. doi:10.1055/s-2003-40507

  36. Bienaymé H, Hulme C, Oddon G, Schmitt P (2000) Maximizing synthetic efficiency: multi-component transformations lead the way. Chem Eur J 6: 3321–3329. doi:10.1002/1521-3765(20000915)6:18<3321::AID-CHEM3321>3.0.CO;2-A

    Article  Google Scholar 

  37. Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39: 3168–3210. doi:10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U

    Google Scholar 

  38. Ugi I, Dömling A, Werner B (2000) Since 1995 the new chemistry of multicomponent reactions and their libraries, including their heterocyclic chemistry. J Heterocycl Chem 37: 647–658

    Article  CAS  Google Scholar 

  39. Weber L, Illgen K, Almstetter M (1999) Discovery of new multi component reactions with combinatorial methods. Synlett 366–374. doi:10.1055/s-1999-2612

  40. Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA (1996) Multiple-component condensation strategies for combinatorial library synthesis. Acc Chem Res 29: 123–131. doi:10.1021/ar9502083

    Article  CAS  Google Scholar 

  41. Ugi I, Dömling A, Hörl W (1994) Multicomponent reactions in organic chemistry. Endeavour 18: 115–122. doi:10.1016/S0160-9327(05)80086-9

    Article  CAS  Google Scholar 

  42. Posner GH (1986) Multicomponent one-pot annulations forming 3 to 6 bonds. Chem Rev 86: 831–844. doi:10.1021/cr00075a007

    Article  CAS  Google Scholar 

  43. Willy B, Müller TJJ (2008) Consecutive multi-component syntheses of heterocycles via palladium-copper catalyzed generation of alkynones. ARKIVOC Part I:195–208

    Google Scholar 

  44. Müller TJJ (2007) Multi-component Syntheses of heterocycles initiated by palladium catalyzed generation of alkynones and chalcones. Chim Oggi/Chem Today 25: 70–78

    Google Scholar 

  45. Müller TJJ (2006) Multi-component syntheses of heterocycles by virtue of palladium catalyzed generation of alkynones and chalcones. Target Heterocycl Syst 10: 54–65

    Google Scholar 

  46. Willy B, Müller TJJ (2009) Multi-component heterocycle syntheses via catalytic generation of alkynones. Curr Org Chem 13: 1777–1790

    Article  CAS  Google Scholar 

  47. Takahashi S, Kuroyama Y, Sonogashira K, Hagihara N (1980) A convenient synthesis of ethynylarenes and diethynylarenes. Synthesis 627–630. doi:10.1055/s-1980-29145

  48. Sonogashira K (1998) In: Diederich F, Stang PJ (eds) Metal catalyzed cross-coupling reactions. Wiley-VCH, Weinheim pp 203–229

  49. Sonogashira K (2002) Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J Organomet Chem 653 46–49. doi:10.1016/S0022-328X(02)01158-0

    Article  CAS  Google Scholar 

  50. Negishi EI, Anastasia L (2003) Palladium-catalyzed alkynylation. Chem Rev 103: 1979–2018. doi:10.1021/cr020377i

    Article  CAS  PubMed  Google Scholar 

  51. Marsden JA, Haley MM (2004). In: Meijere A, Diederich F (eds) Metalcatalyzed cross-coupling Reactions, Metal catalyzed cross-coupling reactions. Wiley-VCH, Weinheim, pp 319–345

  52. Doucet H, Hierso JC (2007) Palladium-based catalytic systems for the synthesis of conjugated enynes by Sonogashira reactions and related alkynylations. Angew Chem Int Ed 46: 834–871. doi:10.1002/anie.200602761

    Article  CAS  Google Scholar 

  53. Yin L, Liebscher J (2007) Carbon–carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107: 133–173. doi:10.1021/cr0505674

    Article  CAS  PubMed  Google Scholar 

  54. Toda Y, Sonogashira K, Hagihara N (1977) A convenient synthesis of 1-alkynyl ketones and 2-alkynamides. Synthesis 777–778. doi:10.1055/s-1977-24574

  55. D’Souza DM, Müller TJJ (2008) Catalytic alkynone generation by sonogashira reaction and its application in three-component pyrimidine synthesis. Nat Protoc 3: 1660–1665. doi:10.1038/nprot.2008.152

    Article  PubMed  Google Scholar 

  56. Karpov AS, Müller TJJ (2003) A new entry to a three component pyrimidine synthesis by tms-ynones via Sonogashira-coupling. Org Lett 5: 3451–3454. doi:10.1021/ol035212q10.1021/ol035212q

    Article  CAS  PubMed  Google Scholar 

  57. Willy B, Müller TJJ (2008) Regioselective three-component synthesis of highly fluorescent 1,3,5-trisubstituted pyrazoles. Eur J Org Chem 4157–4168. doi:10.1002/ejoc.200800444

  58. Karpov AS, Müller TJJ (2003) Straightforward Novel one-pot enaminone and pyrimidine syntheses by coupling–addition– cyclocondensation sequences. Synthesis 2815–2826. doi:10.1055/s-2003-42480

  59. Karpov AS, Merkul E, Rominger F, Müller TJJ (2005) Concise syntheses of meridianins via carbonylative alkynylation and a novel four-component pyrimidine synthesis. Angew Chem Int Ed 44: 6951–6956. doi:10.1002/anie.200501703

    Article  CAS  Google Scholar 

  60. Merkul E, Oeser T, Müller TJJ (2009) Consecutive three-component synthesis of ynones by decarbonylative Sonogashira coupling. Chem Eur J 15: 5006–5011. doi:10.1002/chem.200900119

    Article  CAS  Google Scholar 

  61. Willy B, Dallos T, Rominger F, Schönhaber J, Müller TJJ (2008) Three-component synthesis of cryo-fluorescent 2,4-disubstituted 3- Hbenzo[b][1,4]diazepines—conformational controlof emission properties. Eur J Org Chem 4796–4805. doi:10.1002/ejoc.200800619

  62. Applying the semiempirical AM1 model as implemented in PC Spartan Pro (1999) Wavefunction Inc, Irvine, CA, USA

  63. Thompson MA, Zerner MC (1991) A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis. J Am Chem Soc 113: 8210–8215. doi:10.1021/ja00022a003

    Article  CAS  Google Scholar 

  64. Thompson MA, Glendening ED, Feller D (1994) The nature of K+/crown ether interactions: a hybrid quantum mechanical-molecular mechanical study. J Phys Chem 98: 10465–10476. doi:10.1021/j100092a015

    Article  CAS  Google Scholar 

  65. Thompson MA, Schenter GK (1995) Excited states of the bacteriochlorophyll b dimer of rhodopseudomonas viridis: a QM/MM study of the photosynthetic reaction center that includes MM polarization. J Phys Chem 99: 6374–6386. doi:10.1021/j100017a017

    Article  CAS  Google Scholar 

  66. Thompson MA (1996) QM/MMpol: a consistent model for solute/solvent polarization. Application to the aqueous solvation and spectroscopy of formaldehyde, acetaldehyde, and acetone. J Phys Chem 100: 14492–14507. doi:10.1021/jp960690m

    Article  CAS  Google Scholar 

  67. Zerner MC, Loew GH, Kirchner RF, Mueller-Westerhoff UT (1980) An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene. J Am Chem Soc 102: 589–599. doi:10.1021/ja00522a025

    Article  CAS  Google Scholar 

  68. As implemented in ArgusLab 4.0 (2004) Thompson MA, Planaria Software LLC, Seattle, WA, USA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. J. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willy, B., Müller, T.J.J. Three-component synthesis of benzo[b][1,5]thiazepines via coupling–addition–cyclocondensation sequence. Mol Divers 14, 443–453 (2010). https://doi.org/10.1007/s11030-009-9223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9223-z

Keywords

Navigation