Skip to main content
Log in

Modelling the mechanical behaviour of adhesively bonded and sintered hollow-sphere structures

Mechanics of Composite Materials Aims and scope

Abstract

The mechanical properties of periodic hollow-sphere structures are investigated numerically. Young’s modulus and the Poisson ratio are determined in order to describe their linearly elastic behaviour. The initial compressive yield strength is also calculated. The spheres are located at the nodes of a cubic primitive lattice. The cohesion is achieved by an adhesive concentrated in the minimum gap between neighbouring spheres. The geometry of the structure is discretized based on regular hexahedral elements. This approach is much more time-consuming, but it is important in order to achieve a more accurate simulation of the nonlinear behaviour (e.g., plasticity) of such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. W. S. Sanders, and L. J. Gibson, “Mechanics of BCC and FCC hollow-sphere foams,” Mat. Sci. Eng. A-Struct., 352, 150–161 (2003).

    Article  CAS  Google Scholar 

  2. S. Gasser, F. Paun, A. Cayzeele, and Y. Bréchet, “Uniaxial tensile elastic properties of a regular stacking of brazed hollow spheres,” Scripta Mater., 48, 617–1623 (2003).

    Article  Google Scholar 

  3. P. Degischer, and B. Kriszt (ed.), Handbook of Cellular Metals, WILEY-VCH, Weinheim (2002).

    Google Scholar 

  4. U. Ramamurty and A. Paul, “Variability in the mechanical properties of a metal foam,” Acta Mater., 52, 869–876 (2004).

    Article  CAS  Google Scholar 

  5. M. Jaeckel and H. Smigilski, German Patent Nr. 3 724 156 (1987).

  6. M. S. Gadala, M. L. Mullins, and M. A. Dokainish, “A modifed plasticity theory for porous solids,” Int. J. Numer. Meth. Eng., 15, 649–660 (1980).

    Article  Google Scholar 

  7. R. J. Green, “A plasticity theory for porous solids,” Int. J. Mech. Sci., 14, 215–224 (1972).

    Article  Google Scholar 

  8. A. Öchsner, W. Winter, and G. Kuhn, “On an elastic-plastic transition zone in cellular metals,” Arch. Appl. Mech., 73, No. 3–4, 261–269 (2003).

    Article  Google Scholar 

  9. A. L. Gurson, Plastic Flow and Fractures Behaviour of Ductile Materials Incorporating Void Nucleation, Growth, and Interaction, PhD Thesis, Brown University (1975).

  10. D. Z. Sun, “Micromechanical modelling of ductile damage in metals,” in: 28. Tagung des DVM-Arbeitskreises Bruchvorgänge, Bremen (1996), pp. 287–304.

  11. V. Tvergaard, “On localization in ductile materials containing spherical voids,” Int. J. Fracture, 18, 237–252 (1982).

    Google Scholar 

  12. M. König, “Yield surface for perforated sheets,” Res. Mech., 19, 61–90 (1986).

    Google Scholar 

  13. T. Fiedler, A. Öchsner, J. Gracio, and G. Kuhn, “Structural modeling of the mechanical behavior of periodic cellular solids: open-cell structures,” Mech. Compos. Mater., 41, No. 3, 377–290 (2005).

    Article  CAS  Google Scholar 

  14. S. E. Benzley, E. Perry, K. Merkle, B. Clark, and G. D. Sjaardema, “A comparison of all-hexagonal and all-tetrahedral finite element meshes for elastic and elastic-plastic analysis,” in: Fourth International Meshing Roundtable, Albuquerque, New Mexico, 179–191 (1995).

  15. W. Beitz, and K. H. Grote, Dubbel, Teschenbuch für den Maschinenbau, Springer Verlag, New York (1997).

    Google Scholar 

  16. J. P. Jeandrau, “Analysis and design data for adhesively bonded joints,” Adhesion and Adhesives, 11, 71–79 (1991).

    Article  CAS  Google Scholar 

  17. O. C. Zienkiewicz, and F. C. Scott, “On the principle of repeat ability and its application in analysis of turbine and pump impellers,” Int. J. Numer. Meth. Eng., 4, 445–452 (1972).

    Article  Google Scholar 

  18. R. D. Cook, D. S. Malkeis, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York (2002).

    Google Scholar 

  19. T. J. Lim, B. Smith, and D. L. McDowell, “Behaviour of a random hollow-sphere metal foam,” Acta Mater., 50, 2867–2879 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 6, pp. 803–816, November–December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiedler, T., Sturm, B., Öchsner, A. et al. Modelling the mechanical behaviour of adhesively bonded and sintered hollow-sphere structures. Mech Compos Mater 42, 559–570 (2006). https://doi.org/10.1007/s11029-006-0067-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-006-0067-7

Keywords

Navigation