Skip to main content
Log in

A generalisation of the integral Maxwell model: the gK-BKZ model—frame invariance and analytical solutions

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this work, we present a generalisation of the Maxwell integral model by developing a new relaxation modulus based on the Mittag-Leffler function. The new model provides a better fit to linear experimental data compared to a classical 2-mode Maxwell model. The model is improved to become frame invariant and several analytical solutions are derived to better understand the behaviour of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brown MR, Curtis DJ, Rees P, Summers HD, Hawkins K, Evans PA, Williams PR (2012) Fractal discrimination of random fractal aggregates and its application in biomarker analysis for blood coagulation. Chaos Solit Fract 45:1025–1032

    CAS  ADS  Google Scholar 

  2. Wagner CE, Barbati AC, Engmann J, Burbidge AS, McKinley GH (2017) Quantifying the consistency and rheology of liquid foods using fractional calculus. Food Hydrocoll 69:242–254

    CAS  Google Scholar 

  3. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Fluid mechanics, vol I, second ed. Wiley, Hoboken

    Google Scholar 

  4. Tschoegl NW (2012) The phenomenological theory of linear viscoelastic behavior: an introduction. Springer, Berlin

    Google Scholar 

  5. Podlubny I (1999) Fractional differential equations. Academic Press, Cambridge

    Google Scholar 

  6. Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press and World Scientific, London - Singapore

    Google Scholar 

  7. Gemant A (1936) A method of analyzing experimental results obtained from elastiviscous bodies. Physics 7:311–317

    ADS  Google Scholar 

  8. Gemant A (1938) On fractional differentials. Phil Mag (Ser 7) 25:540–549

    Google Scholar 

  9. Scott-Blair GW (1944) Analytical and integrative aspects of the stress strain-time problem. J Sci Instrum 21:80–84

    ADS  Google Scholar 

  10. Scott-Blair GW (1947) The role of psychophysics in rheology. J Colloid Sci 2:21–32

    Google Scholar 

  11. Scott-Blair GW (1949) Survey of General and Applied Rheology. Pitman, London

    Google Scholar 

  12. Gerasimov A (1948) A generalization of linear laws of deformation and its applications to problems of internal friction. Prikl Matem I Mekh (PMM) 12(3):251–260

    MathSciNet  Google Scholar 

  13. Rabotnov Yu N (1973) On the Use of Singular Operators in the Theory of Viscoelasticity. Moscow, pp. 50. Unpublished lecture notes for the CISM course on rheology held in Udine, October 1973 [http://www.cism.it]

  14. Nutting PG (1921) A new general law of deformation. J Frankline Inst 191:679–685

    Google Scholar 

  15. Shermergor TD (1966) On the use of fractional differentiation operators for the description of elastic-after effect properties of materials. J Appl Mech Tech Phys 7(6):85–87

    ADS  Google Scholar 

  16. Meshkov SI (1970) The integral representation of fractionally exponential functions and their application to dynamic problems of linear viscoelasticity. J Appl Mech Tech Phys 11(1):100–107

    ADS  Google Scholar 

  17. Rossikhin YuA, Shitikova MV (2007) Comparative analysis of viscoelastic models involving fractional derivatives of different orders. Fract Calc Appl Anal 10(2):111–121

    MathSciNet  Google Scholar 

  18. Stiassnie M (1979) On the application of fractional calculus on the formulation of viscoelastic models. Appl Math Model 3:300–302

    Google Scholar 

  19. Torvik PJ, Bagley RL (1984) On the appearance of the fractional derivatives in the behavior of real materials. ASME J Appl Mech 51:294–298

    Google Scholar 

  20. Friedrich C (1991) Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheol Acta 30:151–158

    CAS  Google Scholar 

  21. Schiessel H, Metzler R, Blumen A, Nonnenmacher T (1995) Generalized viscoelastic models: their fractional equations with solutions. J Phys A Math Gen 28:6567

    CAS  ADS  Google Scholar 

  22. Schiessel H, Blumen A (1993) Hierarchical analogues to fractional relaxation equations. J Phys A Math Gen 26:5057

    ADS  Google Scholar 

  23. Friedrich C, Schiessel H, Blumen A (1999) Constitutive behavior modeling and fractional derivatives. Rheol Ser 8:429–466

    Google Scholar 

  24. Song J, Holten-Andersen N, McKinley GH Non-Maxwellian viscoelastic stress relaxations in soft matter. arXiv:2211.06438

  25. Ferrás LL, Luísa M, Rebelo M, Mckinley GH, Afonso A (2019) A generalized Phan-Thien-Tanner model. J Nonnewton Fluid Mech 269:88–99

    Google Scholar 

  26. Ferrás LL, Morgado ML, Rebelo MS (2022) A generalised distributed-order Maxwell model. Math Meth Appl Sci 46:1–20

    MathSciNet  Google Scholar 

  27. Rathinaraj JDJ, McKinley GH, Keshavarz B (2021) Incorporating rheological nonlinearity into fractional calculus descriptions of fractal matter and multi-scale complex fluids. Fractal Fract 5(4):174

    Google Scholar 

  28. Wagner MH (1976) Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt. Rheol Acta 15:136–142

    CAS  Google Scholar 

  29. Ferrás LL, Luísa M, Rebelo M, Mckinley GH, Afonso A (2019) A generalized Phan-Thien-Tanner model. J Nonnewton Fluid Mech 269:88–99

    Google Scholar 

  30. Sharma R, Cherayil BJ (2010) Polymer melt dynamics: microscopic roots of fractional viscoelasticity. Phys Rev E 81(2):021804

    ADS  Google Scholar 

  31. Ferrás LL, Ford N, Luísa M, Rebelo M, Mckinley GH, Nóbrega JM (2018) Theoretical and numerical analysis of unsteady fractional viscoelastic flows in simple geometries. Comput Fluids 174:14–33

    MathSciNet  Google Scholar 

  32. Jaishankar A, McKinley GH (2014) A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J Rheol 58:1751–1788

    CAS  ADS  Google Scholar 

  33. Pollard H (1948) The completely monotonic character of the Mittag-Leffler function \(E_\alpha (-x)\). Bull Am Math Soc 52:908–910

    Google Scholar 

  34. Schneider WR (1996) Completely monotone generalized Mittag-Leffler functions. Expo Math 14:3–16

    MathSciNet  Google Scholar 

  35. Macosko CW (1994) Rheology: principles, measurements, and application. VCH, New York

    Google Scholar 

  36. Costa MPF, Ribeiro CPB (2012) Generalized fractional Maxwell model: Parameter estimation of a viscoelastic material. In: Simos Theodore E, Psihoyios George, Tsitouras Ch, Anastassi Zacharias (Eds.), 10th International conference of numerical analysis and applied mathematics. AIP Conference Proceedings, vol 1479, pp 790-793

  37. Yang P, Lam Y Cheong, Zhu Ke-Qin (2010) Constitutive equation with fractional derivatives for the generalized UCM model. J Non-Newt Fluid Mech 165:88–97

    CAS  Google Scholar 

  38. Verdier C, Piau JM, Benyahia L (1996) Influence des propriétés élongationnelles dans le pelage des polymères. Comptes Rendus de l’Academie des Sciences-Serie IIb-Mecanique Physique Chimie Astronomie 323:739–746

    CAS  Google Scholar 

  39. Joseph DD (2013) Fluid dynamics of viscoelastic liquids, vol 84. Springer, Berlin

    Google Scholar 

  40. Papanastasiou AC, Scriven LE, Macosko CW (1983) An integral constitutive equation for mixed flows: viscoelastic characterization. J Rheol 27:387. https://doi.org/10.1122/1.549712

    Article  CAS  ADS  Google Scholar 

  41. Venkataraman SK, Winter HH (1990) Finite shear strain behavior of a crosslinking polydimethylsiloxane near its gel point. Rheol Acta 29(5):423–432

    CAS  Google Scholar 

  42. Sousa F, Lages C, Ansoni J, Castelo A, Simao A (2019) A finite difference method with meshless interpolation for incompressible flows in non-graded tree-based grids. J Comput Phys 396:848–866

    MathSciNet  ADS  Google Scholar 

  43. Castelo A, Afonso AM, De Souza Bezerra W (2021) A hierarchical grid solver for simulation of flows of complex fluids. Polymers 13(18):3168

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bertoco J, de Araújo MSB, Leiva RT, Sánchez HAC, Castelo A (2021) Numerical simulation of KBKZ integral constitutive equations in hierarchical grids. Appl Sci 11:4875. https://doi.org/10.3390/app11114875

    Article  CAS  Google Scholar 

  45. Bertoco J (2016) Solução numérica do modelo constitutivo KBKZ-PSM para escoamentos com superfícies livres, Ph.D. Thesis, University of São Paulo, ICMC - São Carlos. https://teses.usp.br/teses/disponiveis/55/55134/tde-16012017-162912/en.php

  46. Quinzani LM, Armstrong RC, Brown RA (1994) Birefringence and laser-doppler velocimetry (LDV) studies of viscoelastic flow through a planar contraction. J Non-Newton Fluid Mech 52:1–36

    CAS  Google Scholar 

  47. Costa MFP, Coelho C, Ferrás LL (2021) Optimisation approach for parameter estimation of the generalised PTT viscoelastic model. In: Gervasi O et al (eds) Computational science and its applications-ICCSA 2021. Lecture Notes in Computer Science. Springer, Cham

    Google Scholar 

Download references

Acknowledgements

This research was funded by FCT—Fundação para a Ciência e a Tecnologia, through LA/P/0045/2020 (ALiCE), UIDB/00532/2020 and UIDP/00532/2020 (CEFT), funded by national funds through FCT/MCTES (PIDDAC). It was also funded by FCT through CMAT (Centre of Mathematics of the University of Minho) projects UIDB/00013/2020 and UIDP/00013/2020. The work was also funded by Fapesp-Fundação de Amparo à Pesquisa do Estado de São Paulo, Fapesp-2017/21105-6. M.L. Morgado aknowledges funding by FCT through projects projects UIDB/04621/2020 and UIDP/04621/2020 of CEMAT/ IST-ID, Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon. This work was also funded by national funds through the FCT under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications). Research was carried out using the computational resources of the Center for Mathematical Sciences Applied to Industry (CeMEAI), funded by FAPESP grant 2013/07375-0. This work is financially supported by national funds through the FCT/MCTES (PIDDAC), under the project 2022.06672.PTDC - iMAD - Improving the Modelling of Anomalous Diffusion and Viscoelasticity: solutions to industrial problems, with DOI 10.54499/2022.06672.PTDC (https://doi.org/10.54499/2022.06672.PTDC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosalía T. Leiva or Luís L. Ferrás.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Semi-analytical solution for the flow between parallel plates

Semi-analytical solution for the flow between parallel plates

The equations governing the flow of an incompressible gK-BKZ fluid are:

$$\begin{aligned} \nabla \cdot \textbf{u}&=0 \end{aligned}$$
(A1)
$$\begin{aligned} \frac{\partial \textbf{u}}{\partial t}+\nabla \cdot (\textbf{v v})&=-\nabla p+\frac{1}{R e} \nabla ^{2} \textbf{u}+\nabla \cdot \varvec{\Phi }+\frac{1}{F r^{2}} \textbf{g}. \end{aligned}$$
(A2)

In (A2), \(\Phi\) is given by

$$\begin{aligned} \varvec{\Phi }=\varvec{\sigma }-\frac{1}{R e} \dot{\gamma }, \end{aligned}$$
(A3)

where \(\dot{\gamma }=\nabla \textbf{u}+(\nabla \textbf{u})^{\textrm{T}}\), \(Re=\frac{\rho _{0} U L}{\eta _{0}}\) is the Reynolds number, \(F r=\frac{U}{\sqrt{L g}}\) is the Froude number, \(W i=\lambda _{r e f} \frac{U}{L}\) is the Weissenberg number; U is the mean velocity, L is a characteristic length, \(\textbf{g}\) and \(\rho _{0}\) are the gravity and density of the fluid, respectively. The zero shear-rate viscosity is given by \(\eta _{0}= S_0 \lambda _{r e f}\) with \(\lambda _{r e f}\) the mean relaxation time.

The system of governing equation becomes complete by adding Eqs. (37) and (49).

The equations become dimensionless by proceeding as follows. The dimensional variables are rewritten with a horizontal bar over them. Let

$$\begin{aligned} \overline{\textbf{x}}= & {} L \textbf{x}, \quad \bar{t}=\frac{L}{U} t,\\ \overline{\textbf{u}}= & {} U \textbf{u},\quad \bar{p}=\rho _{0} U^{2} p,\quad \overline{\varvec{\sigma }}=\rho _{0} U^{2} \varvec{\sigma },\\ \bar{\lambda }_{k}= & {} \lambda _{r e f} \lambda _{k}, \quad \bar{S}_{0}=\rho _{0} U^{2} S_0. \end{aligned}$$

Equations (49)-(A2) are solved in 2D. Note that \(p=\) \(p(\textbf{x}, t), \textbf{u}=(u(\textbf{x}, t), v(\textbf{x}, t))^{T}\) and

$$\begin{aligned} \begin{aligned} \varvec{\sigma }(\textbf{x}, t)&=\left[ \begin{array}{ll} \sigma _{x x} &{} \sigma _{x y} \\ \sigma _{x y} &{} \sigma _{y y} \end{array}\right] , \quad \varvec{\Phi }(\textbf{x}, t)=\left[ \begin{array}{cc} \Phi _{x x} &{} \Phi _{x y} \\ \Phi _{x y} &{} \Phi _{y y} \end{array}\right] , \\ \nabla \textbf{u}(\textbf{x}, t)&=\left[ \begin{array}{ll} \displaystyle \frac{\partial u}{\partial x} &{} \displaystyle \frac{\partial v}{\partial x} \\ \\ \displaystyle \frac{\partial u}{\partial y} &{} \displaystyle \frac{\partial v}{\partial y} \end{array}\right] , \quad \textbf{B}_{t^{\prime }}(\textbf{x}, t)=\left[ \begin{array}{ccc} { B_{t^{\prime }_{x x}}} &{} {B_{t^{\prime }_{x y}}} &{} 0 \\ {B_{t^{\prime }_{x y}}} &{} {B_{t^{\prime }_{y y}}} &{} 0 \\ 0 &{} 0 &{} 1 \end{array}\right] . \end{aligned} \end{aligned}$$

Note that to compute the total tensor in 2D, we consider the three-dimensional Finger tensor. This definition takes into account the absence of deformation in the third coordinate (\(B_{t^{\prime }_{z z}}\) in three-dimensional flows) and also guarantees the nonzero determinant property for the Finger tensor.

Considering two-dimensional Cartesian flows, the governing Eqs. (A1)-(A3) are discretized as follows [44, 45]

$$\begin{aligned} \begin{aligned}&\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} =0, \\&\frac{\partial u}{\partial t}+\frac{\partial \left( u^{2}\right) }{\partial x}+\frac{\partial (u v)}{\partial y}=-\frac{\partial p}{\partial x}+\frac{1}{{\text {Re}}}\left[ \frac{\partial ^{2} u}{\partial x^{2}}+\frac{\partial ^{2} u}{\partial y^{2}}\right] \\&\quad +\frac{\partial \Phi _{x x}}{\partial x}+\frac{\partial \Phi _{x y}}{\partial y}+\frac{1}{F r^{2}} g_{x}, \\&\frac{\partial v}{\partial t}+\frac{\partial (u v)}{\partial x}+\frac{\partial \left( v^{2}\right) }{\partial y} =-\frac{\partial p}{\partial y}+\frac{1}{R e}\left[ \frac{\partial ^{2} v}{\partial x^{2}}+\frac{\partial ^{2} v}{\partial y^{2}}\right] \\&\quad +\frac{\partial \Phi _{x y}}{\partial x}+\frac{\partial \Phi _{y y}}{\partial y}+\frac{1}{F r^{2}} g_{y}, \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} \Phi _{x x}&=\sigma _{x x}-\frac{2}{R e}\left( \frac{\partial u}{\partial x}\right) , \\ \Phi _{x y}&=\sigma _{x y}-\frac{1}{R e}\left( \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right) , \\ \Phi _{y y}&=\sigma _{y y}-\frac{2}{R e}\left( \frac{\partial v}{\partial y}\right) . \end{aligned} \end{aligned}$$

\(\varvec{\sigma }\) is given by:

$$\begin{aligned} \begin{aligned} \sigma _{x x}&=\int _{-\infty }^{t} m(t-t')\\&\quad \frac{{a}}{{a}-3+{b} I_{1}+(1-{b}) I_{2}} {B_{t^{\prime }_{x x}}} d t^{\prime } \\ \sigma _{x y}&=\int _{-\infty }^{t} m(t-t')\\&\quad \frac{{a}}{{a}-3+{b} I_{1}+(1-{b}) I_{2}} {B_{t^{\prime }_{x y}}} d t^{\prime } \\ \sigma _{y y}&=\int _{-\infty }^{t} m(t-t')\\&\quad \frac{{a}}{{a}-3+{b} I_{1}+(1-{b}) I_{2}} {B_{t^{\prime }_{y y}}} d t^{\prime } \end{aligned} \end{aligned}$$

with

$$\begin{aligned} m(t-t')= & {} \frac{S_0\Gamma (\beta )}{W i\;\alpha } \left( E_{\alpha ,\alpha +\beta -1}\left( \frac{{t'}-t}{W i }\right) \right. \nonumber \\{} & {} \left. +(1-\beta ) E_{\alpha ,\alpha +\beta }\left( \frac{{t'}-t}{W i }\right) \right) . \end{aligned}$$
(A4)

The Finger tensor components satisfies (see 37):

$$\begin{aligned} \begin{aligned} \frac{\partial }{\partial t} {B_{t^{\prime }_{x x}}}&=-\frac{\partial }{\partial x}\left( u {B_{t^{\prime }_{x x}}}\right) -\frac{\partial }{\partial y}\left( v {B_{t^{\prime }_{x x}}}\right) \\&\quad +2\left[ \frac{\partial u}{\partial x} {B_{t^{\prime }_{x x}}}+\frac{\partial u}{\partial y} {B_{t^{\prime }_{x y}}}\right] \\ \frac{\partial }{\partial t} {B_{t^{\prime }_{x y}}}&=-\frac{\partial }{\partial x}\left( u {B_{t^{\prime }_{x y}}}\right) -\frac{\partial }{\partial y}\left( v {B_{t^{\prime }_{x y}}}\right) \\&\quad +\frac{\partial u}{\partial y} {B_{t^{\prime }_{y y}}}+\frac{\partial v}{\partial x} {B_{t^{\prime }_{x x}}} \\ \frac{\partial }{\partial t} {B_{t^{\prime }_{y y}}}&=-\frac{\partial }{\partial x}\left( u {B_{t^{\prime }_{y y}}}\right) -\frac{\partial }{\partial y}\left( v {B_{t^{\prime }_{y y}}}\right) \\&\quad +2\left[ \frac{\partial v}{\partial x} {B_{t^{\prime }_{x y}}}+\frac{\partial v}{\partial y} {B_{t^{\prime }_{y y}}}\right] \end{aligned} \end{aligned}$$

We assume the flow is fully developed and look for velocity, pressure and stress tensors of the form \(u=u(y)\), \(v(y)=0\), \(p=p(x, y)\), \(\sigma _{x y}=\sigma _{x y}(y)\), \(\sigma _{x x}=\sigma _{x x}(y)\), \(\sigma _{y y}=\sigma _{y y}(y)\), for \(y \in [0,1]\).

The components of the Finger tensor are defined for simple shear flows by:

$$\begin{aligned} \textbf{B}_{t'}(\textbf{x},t)) = \begin{pmatrix} 1+ \dot{\gamma }^2(t-t')^2 &{} \dot{\gamma }(t-t') &{} 0\\ \dot{\gamma }(t-t') &{} 1 &{} 0\\ 0 &{} 0 &{} 1 \end{pmatrix} \end{aligned}$$

leading to the invariants \(I_{1}\) and \(I_{2}\), needed to compute \(H\left( I_{1}, I_{2}\right)\) in the Papanastasiou equation.

$$\begin{aligned} I_{1}=I_{2}=3+\dot{\gamma }^{2}\left( t-t^{\prime }\right) ^{2} \end{aligned}$$

Here, \(\dot{\gamma }=\displaystyle \frac{\textrm{d} u}{\,\textrm{d} y}\).

The momentum equation becomes,

$$\begin{aligned} -\frac{\partial p}{\partial x} + \frac{\partial \sigma _{x y}}{\partial y}= & {} 0 \end{aligned}$$
(A5)
$$\begin{aligned} -\frac{\partial p}{\partial y} + \frac{\partial \sigma _{y y}}{\partial y}= & {} 0 \end{aligned}$$
(A6)

and the stress tensor components are given by

$$\begin{aligned} \sigma _{x y}= & {} \int _{-\infty }^{t} m(t-t')\frac{\dot{\gamma }\left( t-t^{\prime }\right) }{{a}+\dot{\gamma }^{2}\left( t-t^{\prime }\right) ^{2}} d t^{\prime } \end{aligned}$$
(A7)
$$\begin{aligned} \sigma _{x x}= & {} \int _{-\infty }^{t} m(t-t')\frac{\left[ 1+\dot{\gamma }^{2}\left( t-t^{\prime }\right) ^{2}\right] }{{a}+\dot{\gamma }^{2}\left( t-t^{\prime }\right) ^{2}} d t^{\prime }, \end{aligned}$$
(A8)
$$\begin{aligned} \sigma _{y y}= & {} \int _{-\infty }^{t} m(t-t')\frac{1}{{a}+\dot{\gamma }^{2}\left( t-t^{\prime }\right) ^{2}} d t^{\prime } \end{aligned}$$
(A9)

with \(m(t-t')\) defined by (A4).

From Eq. (A6) we have that

$$\begin{aligned} p(x, y)=\sigma _{y y}(y)+F(x), \end{aligned}$$
(A10)

therefore, Eq. (A5) can be rewritten as

$$\begin{aligned} \frac{\partial \sigma _{x y}}{\partial y}=F^{\prime }(x). \end{aligned}$$
(A11)

We can argue that the left side of Eq. (A11) is only a function of y, leading to \(F^{\prime }\) being a constant,

$$\begin{aligned} C=\frac{\partial p}{\partial x}. \end{aligned}$$

Therefore,

$$\begin{aligned} \sigma _{x y}(y)=C y+h(x). \end{aligned}$$

Since \(\sigma _{x y}(1 / 2)=0\), by symmetry, we have that \(h(x)=-\frac{1}{2} C\), leading to

$$\begin{aligned} \sigma _{x y}(y)=(y-1 / 2) C. \end{aligned}$$
(A12)

Case \(\alpha \ne 1\) or \(\beta \ne 1\):

The memory function is given by (A4), then using (A12) Eq. (A7) can be written as,

$$\begin{aligned} \begin{aligned} (y-1 / 2) C&=\frac{S_0 \Gamma (\beta ){a}}{\alpha W i} \int _{-\infty }^{t} \left[ E_{\alpha ,\alpha +\beta -1}\left( \frac{{t'}-t}{W i }\right) \right. +\\&\quad \left. + (1-\beta ) E_{\alpha ,\alpha +\beta }\left( \frac{{t'}-t}{W i }\right) \right] \\&\quad \frac{\dot{\gamma }\left( t-t^{\prime }\right) }{{a}+\dot{\gamma }^{2}\left( t-t^{\prime }\right) ^{2}} d t^{\prime }. \end{aligned} \end{aligned}$$

The change of variable \(s=t-t^{\prime }\) leads to

$$\begin{aligned} (y-1 / 2) C= & {} \frac{S_0 \Gamma (\beta ){a}}{\alpha W i} \int _{0}^{\infty } \left( E_{\alpha ,\alpha +\beta -1}\left( \frac{-s}{W i }\right) \right. \nonumber \\{} & {} \left. +(1-\beta ) E_{\alpha ,\alpha +\beta }\left( \frac{-s}{W i }\right) \right) \nonumber \\{} & {} \frac{\dot{\gamma } s}{ {a}+\dot{\gamma }^{2} s^{2}} d s \end{aligned}$$
(A13)

Let us define \(s=\left( \varvec{a}^{1 / 2} / \dot{\gamma }\right) \mathcal {T}\). Then, we have that

$$\begin{aligned} (y-1 / 2) C= & {} K \int _{0}^{\infty } \left( E_{\alpha ,\alpha +\beta -1}\left( -\phi \mathcal {T}\right) \right. \nonumber \\{} & {} \left. +(1-\beta ) E_{\alpha ,\alpha +\beta }\left( -\phi \mathcal {T}\right) \right) \frac{\mathcal {T}}{1+\mathcal {T}^{2}} d \mathcal {T} \end{aligned}$$
(A14)

where

$$\begin{aligned} \phi =\frac{{a}^{1 / 2}}{\dot{\gamma } W i}, \quad K=\frac{S_0 \Gamma (\beta ){a}}{\dot{\gamma } \alpha W i}. \end{aligned}$$
(A15)

The integral in Eq. (A14) can be solved numerically by a higher order quadrature method.

Taking the boundary conditions at the channel entrance, where the velocity \(u^{i n}(y)\) is defined by

$$\begin{aligned} u^{i n}(y)=1-4\left( y-\frac{1}{2}\right) ^{2}, \quad 0 \le y \le 1 \end{aligned}$$

we have

$$\begin{aligned} \int _{0}^{1} u^{i n}(y) d y=\frac{2}{3} \end{aligned}$$

and by mass conservation, the solution u(y) should verify the following equation:

$$\begin{aligned} \int _{0}^{1} u(y) d y=\frac{2}{3}. \end{aligned}$$
(A16)

Integrating Eq. (A16) by parts leads to

$$\begin{aligned} \int _{0}^{1} y \dot{\gamma }(y) d y+\frac{2}{3}=0. \end{aligned}$$
(A17)

To obtain the solutions \(u(y),\; p(x, y),\; \sigma _{x y}(y),\; \sigma _{x x}(y)\) and \(\sigma _{y y}(y)\), first, calculate \(\dot{\gamma }\) and C by the following procedure:

  • P1- Estimate a value for C; which can initially be taken to be the corresponding Newtonian value;

  • P2- Discretize the interval \(\left( \frac{1}{2}, 1\right]\), corresponding to half the channel, considering N points, \(y_j=\displaystyle \frac{1}{2}+j \frac{1}{2 N},\, j=1,2, \cdots , N\).

  • P3- Calculate the profile \(\dot{\gamma }_{j}\), finding the zeros of the function (A13), \(j=1,2, \cdots , N;\)

    • − Note that we need to approximate the integral on the right side of (A13). For that we need to truncate the domain of integration and use an appropriate quadrature rule.

  • P4- Check if \(\dot{\gamma }_{j}\) satisfies the Eq. (A17);

  • P5- If the Eq. (A17) is not satisfied, provide another value for C and redo steps P3 and P4.

After obtaining the values for C and \(\dot{\gamma }\left( y_{j}\right)\) and using the steps P1-P5, the value of \(\sigma _{x y}\left( y_{j}\right)\) is obtained from (A12). The values of \(\sigma _{x x}\left( y_{j}\right)\) and \(\sigma _{y y}\left( y_{j}\right)\) can be obtained from (A8) and (A9), respectively.

Assuming the change of variables \(s=t-t^{\prime }\) and taking \(s={a}^{1 / 2} \mathcal {T} / \dot{\gamma }\left( y_{j}\right)\), these integrals simplify as

$$\begin{aligned} \sigma _{x x}\left( y_{j}\right)= & {} K \int _{0}^{\infty } \left( E_{\alpha ,\alpha +\beta -1}\left( \frac{-s}{W i }\right) \right. \nonumber \\{} & {} \left. +(1-\beta ) E_{\alpha ,\alpha +\beta }\left( \frac{-s}{W i }\right) \right) \frac{1+{a} \mathcal {T}^{2}}{1+\mathcal {T}^{2}} d \mathcal {T} \end{aligned}$$
(A18)
$$\begin{aligned} \sigma _{y y}\left( y_{j}\right)= & {} K \int _{0}^{\infty } \left( E_{\alpha ,\alpha +\beta -1}\left( \frac{-s}{W i }\right) \right. \nonumber \\{} & {} \left. +(1-\beta ) E_{\alpha ,\alpha +\beta }\left( \frac{-s}{W i }\right) \right) \frac{1}{1+\mathcal {T}^{2}} d \mathcal {T} \end{aligned}$$
(A19)

where K and \(\phi\) are given by (A15). The integrals in (A18) and (A19) can be solved numerically.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiva, R.T., Ferrás, L.L., Castelo, A. et al. A generalisation of the integral Maxwell model: the gK-BKZ model—frame invariance and analytical solutions. Meccanica 59, 363–384 (2024). https://doi.org/10.1007/s11012-023-01751-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-023-01751-5

Keywords

Mathematics Subject Classification

Navigation