Skip to main content
Log in

Non-dimensional analysis of the elastic beam having periodic linear spring mass resonators

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Band gaps appear in the frequency spectra of an elastic beam having periodic spring-mass attachment, acronymed as metabeam. Two widely used beam theories, i.e. Euler–Bernoulli and Timoshenko, are non-dimensionalized in order to obtain the dimensionless periodicity parameters. In this paper, the location and width of band-gaps are investigated due to the variation of these periodicity parameters of a metabeam. Implementing transfer matrix method in conjunction with Bloch–Floquet theorem, a unified methodology has been adopted to estimate the propagation and attenuation bands in a metabeam. This paper provides a guideline towards the designing of wide-band metabeam by tunning the non-dimensional parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu Y, Yu D, Li L, Zhao H, Wen J, Wen X (2007) Design guidelines for flexural wave attenuation of slender beams with local resonators. Phys Lett A 362(5–6):344–347

    ADS  Google Scholar 

  2. Liu L, Hussein MI (2011) Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance. J Appl Mech 79(1):011003–011017

    Article  Google Scholar 

  3. Mead DM (1996) Wave propagation in continuous periodic structures: research contributions from Southampton, 1964–1995. J Sound Vib 190(3):495–524

    Article  ADS  Google Scholar 

  4. Yu D, Liu Y, Wang G, Zhao H, Qiu J (2006) Flexural vibration band gaps in Timoshenko beams with locally resonant structures. J Appl Phys 100(12):124901

    Article  ADS  Google Scholar 

  5. Wang MY, Wang X (2013) Frequency band structure of locally resonant periodic flexural beams suspended with force–moment resonators. J Phys D Appl Phys 46(25):255502

    Article  ADS  Google Scholar 

  6. Wang T, Sheng MP, Qin QH (2016) Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators. Phys Lett A 380(4):525–529

    Article  ADS  Google Scholar 

  7. Zhang S, Wu JH, Hu Z (2013) Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators. J Appl Phys 113(16):163511

    Article  ADS  Google Scholar 

  8. Khajehtourian R, Hussein MI (2014) Dispersion characteristics of a nonlinear elastic metamaterial. AIP Adv 4(12):124308

    Article  ADS  Google Scholar 

  9. Hu G, Tang L, Das R, Gao S, Liu H (2017) Acoustic metamaterials with coupled local resonators for broadband vibration suppression. AIP Adv 7(2):025211

    Article  ADS  Google Scholar 

  10. Nouh MA, Aldraihem OJ, Baz A (2015) Periodic metamaterial plates with smart tunable local resonators. J Intell Mater Syst Struct 27(13):1829–1845

    Article  Google Scholar 

  11. Tang L, Cheng L (2017) Ultrawide band gaps in beams with double-leaf acoustic black hole indentations. J Acoust Soc Am 142(5):2802–2807

    Article  ADS  Google Scholar 

  12. Bacquet CL, Al Ba’ba’a H, Frazier MJ, Nouh M, Hussein MI (2018) Chapter two-metadamping dissipation emergence in elastic metamaterials. Adv Appl Mech 51:115–164

    Article  Google Scholar 

  13. Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71(13):2022–2025

    Article  ADS  Google Scholar 

  14. Bo Y, Yong C, Min J, Shuai T, Miao H, Minglin T (2017) The interaction of resonance and bragg scattering effects for the locally resonant phononic crystal with alternating elastic and fluid matrices. Arch Acoust 42(4):725–733

    Article  Google Scholar 

  15. Sheng P, Zhang XX, Liu Z, Chan CT (2003) Locally resonant sonic materials. Physica B 338(1):201–205

    Article  ADS  Google Scholar 

  16. Banerjee A, Das R, Calius EP (2019) Waves in structured mediums or metamaterials: a review. Arch Comput Methods Eng 26(4):1029–1058

    Article  MathSciNet  Google Scholar 

  17. Banerjee A, Das R, Calius EP (2017) Frequency graded 1D metamaterials: a study on the attenuation bands. J Appl Phys 122(7):075101

    Article  ADS  Google Scholar 

  18. Muhammad Lim CW (2019) Elastic waves propagation in thin plate metamaterials and evidence of low frequency pseudo and local resonance bandgaps. Phys Lett A 383(23):2789–2796

    Article  ADS  Google Scholar 

  19. Xiang HJ, Shi ZF, Wang SJ, Mo YL (2012) Vibration attenuation and frequency band gaps in layered periodic foundation: theory and experiment. In: 15th world conference on earthquake engineering

  20. Ahmed RU, Adiba A, Banerjee S (2015) Energy scavenging from acousto-elastic metamaterial using local resonance phenomenon. Active Passive Smart Struct Integr Syst 9431:943106–943110

    Google Scholar 

  21. Hu G, Tang L, Banerjee A, Das R (2016) Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting. J Vib Acoust 139(1):11

    Google Scholar 

  22. Li Y, Baker E, Reissman T, Sun C, Liu WK (2017) Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting. Appl Phys Lett 111(25):251903

    Article  ADS  Google Scholar 

  23. Hu G, Tang L, Das R (2018) Internally coupled metamaterial beam for simultaneous vibration suppression and low frequency energy harvesting. J Appl Phys 123(5):055107

    Article  ADS  Google Scholar 

  24. Chen JS, Sharma B, Sun CT (2011) Dynamic behaviour of sandwich structure containing spring–mass resonators. Compos Struct 93(8):2120–2125

    Article  Google Scholar 

  25. Sharma B, Sun CT (2015) Impact load mitigation in sandwich beams using local resonators. J Sandw Struct Mater 18(1):50–64

    Article  Google Scholar 

  26. Sharma B, Sun CT (2016) Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators. J Sound Vib 364:133–146

    Article  ADS  Google Scholar 

  27. Wang X, Wang MY (2016) An analysis of flexural wave band gaps of locally resonant beams with continuum beam resonators. Meccanica 51(1):171–178

    Article  MathSciNet  Google Scholar 

  28. Zhou J, Wang K, Xu D, Ouyang H (2017) Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams. J Appl Phys 121(4):044902

    Article  ADS  Google Scholar 

  29. Elishakoff I, Kaplunov J, Nolde E (2015) Celebrating the century of Timoshenko’s study of effects of shear deformation and rotary inertia. Appl Mech Rev 67:060802

    Article  ADS  Google Scholar 

  30. Rayleigh JWS (1877–1878) The theory of sound. Macmillan, London

  31. Bresse JAC (1859) Cours de Mecanique Appliquee. Mallet-Bachelier, Paris

    MATH  Google Scholar 

  32. Timoshenko SP (1920) On the differential equation for the flexural vibrations of prismatical rods. Glas Hrvat Prirodosl Drus Zagreb 32(2):55–57

    Google Scholar 

  33. Timoshenko SP (1921) On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos Mag 41(245):744–746

    Article  Google Scholar 

  34. Timoshenko PS (1921) On the additional deflection due to shearing. Glas Hrvat Prirodosl Drus Zagreb 33(Part 1, Nr. 1):50–52

    Google Scholar 

  35. Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4):040802–040802

    Article  ADS  Google Scholar 

  36. Mei C, Mace BR (2005) Wave reflection and transmission in Timoshenko beams and wave analysis of Timoshenko beam structures. Trans ASME 127:382–394

    Google Scholar 

  37. Majkut Leszek (2009) Free and forced vibrations of Timoshenko beams described by single difference equation. J Theor Appl Mech 47(1):193–210

    Google Scholar 

  38. Brillouin Leon (1946) Wave propagation in periodic structures: electric filters and crystal lattices. McGraw-Hill Book Company, New York

    MATH  Google Scholar 

  39. Wu JS, Chang BH (2013) Free vibration of axial-loaded multi-step Timoshenko beam carrying arbitrary concentrated elements using continuous-mass transfer matrix method. Eur J Mech A Solids 38:20–37

    Article  MathSciNet  Google Scholar 

  40. Cowper G (1966) The shear coefficient in Timoshenko’s beam theory. ASME, New York

    Book  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the research grant of Inspire Faculty Award of Department of Science and Technology, Ministry of Science and Technology, Government of India, Grant DST/INSPIRE/04/2018/000052 for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A. Non-dimensional analysis of the elastic beam having periodic linear spring mass resonators. Meccanica 55, 1181–1191 (2020). https://doi.org/10.1007/s11012-020-01151-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01151-z

Keywords

Navigation