Skip to main content
Log in

Investigating the effects of mushy zone thickness on residual stresses in alloy solidification

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A thermo-elasto-plastic analysis is performed to study the effect of mushy zone thickness on residual stress formation in alloy solidification. Specific heat flux distributions on the model boundaries are predicted in order to achieve pre-defined mushy zone thicknesses. The effective heat capacity method is utilized for the thermal analysis of the solidification process. The von-Mises criterion with a hardening model and stress–strain power law is employed to describe the elasto-plastic behavior. Material parameters are assumed to be temperature dependent and required analyses are made using the meshless local Petrov–Galerkin method. Several numerical examples are presented to calculate the temperature and stress fields developed in the material undergoing solidification. Under the assumed conditions, we conclude that the mushy zone thickness does not play a significant role in the development of residual stresses in the cast material. Moreover, it is shown that the solidification time can be reduced without having a significant effect on the residual stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Dantzig JA, Rappaz M (2009) Solidification. EPFL Press, Switzerland

    Book  MATH  Google Scholar 

  2. Bellet M, Thomas BG (2008) Modeling of stress, distortion, and hot tearing. In: ASM Handbook, Cast., ASM International, 15: 449–461

  3. Tszeng TC, Kobayashi S (1989) Stress analysis in solidification processes: application to continuous casting. Int J Mach Tools Manufact 29:121–140

    Article  Google Scholar 

  4. Flemings MC (1974) Solidification processing. McGraw Hill, New York

    Google Scholar 

  5. Donachie MJ, Donachie SJ (2002) Superalloys: a technical guide. ASM International, Ohio

    Google Scholar 

  6. Nejad AA, Maghrebi MJ, Tabrizi HB et al (2010) Optimal operation of alloy material in solidification processes with inverse heat transfer. Int Commun Heat Mass 37(6):711–716

    Article  Google Scholar 

  7. Tien R, Kaump V (1969) Thermal stresses during solidification on basis of elastic model. J Appl Mech 36:763–767

    Article  Google Scholar 

  8. Weiner JH, Boley BA (1963) Elasto-plastic thermal stresses in a solidifying body. J Mech Phys Solids 11:145–154

    Article  ADS  MATH  Google Scholar 

  9. Cross M (1992) Control volume model of fluid flow, solidification and stress. Thames Polytechnic, London

  10. Williams JR, Lewis RW, Morgan K (1979) An elasto–viscoplastic thermal stress model with applications to the continuous casting of metals. Int J Num Meth Eng 14:1–9

    Article  MATH  Google Scholar 

  11. Kristiansson JO (1984) Thermomechanical behavior of the solidifying shell within continuous casting billet molds: a numerical approach. J Therm Stresses 7:209–226

    Article  Google Scholar 

  12. Heinlein M, Mukherjee S, Richmond O (1986) A boundary element method analysis of temperature fields and stresses during solidification. Acta Mech 59:59–81

    Article  ADS  MATH  Google Scholar 

  13. Zabaras N, Ruan Y, Richmond O (1990) Front tracking thermomechanical model for hypoelastic–viscoplastic behavior in a solidifying body. Comt Meth Appl Mech Eng 81:333–364

    Article  MATH  Google Scholar 

  14. Zabaras N, Ruan Y, Richmond O (1991) On the calculation of deformations and stresses during axially symmetric solidification. J Appl Mech 58:865–871

    Article  Google Scholar 

  15. Park JK, Thomas BG, Samarasekera IV (2002) Analysis of thermomechanical behaviour in billet casting with different mould corner radii. Ironmak Steelmak 29:359–375

    Article  Google Scholar 

  16. Li C, Thomas BG (2004) Thermomechanical finite-element model of shell behavior in continuous casting of steel. Metall Mater Trans B 35:1151–1172

    Article  Google Scholar 

  17. Mariano PM (2004) Some thermodynamical aspects of the solidification of two-phase flows. Meccanica 39(4):369–382

    Article  MathSciNet  MATH  Google Scholar 

  18. Tan L, Zabaras N (2005) A thermomechanical study of the effects of mold topography on the solidification of aluminum alloys. Mater Sci Eng A 404(1):197–207

    Article  Google Scholar 

  19. Samanta D, Zabaras N (2005) A coupled thermomechanical, thermal transport and segregation analysis of the solidification of aluminum alloys on molds of uneven topographies. Mater Sci Eng A 408(1):211–216

    Article  Google Scholar 

  20. Koric S, Thomas BG (2006) Efficient thermo-mechanical model for solidification processes. Int J Numer Meth Eng 66(12):1955–1989

    Article  MATH  Google Scholar 

  21. Koric S, Hibbeler LC, Thomas BG (2009) Explicit coupled thermo-mechanical finite element model of steel solidification. Int J Numer Meth Eng 78(1):1–31

    Article  MATH  Google Scholar 

  22. Koric S, Thomas BG, Voller VR (2010) Enhanced latent heat method to incorporate superheat effects into fixed-grid multiphysics simulations. Numer Heat Tr B-Fund 57(6):396–413

    Article  ADS  Google Scholar 

  23. Koric S, Hibbeler LC, Liu R, Thomas BG (2010) Multiphysics model of metal solidification on the continuum level. Numer Heat Tr B-Fund 58(6):371–392

    Article  ADS  Google Scholar 

  24. Teskeredžić A, Demirdžić I, Muzaferija S (2015) Numerical method for calculation of complete casting process—Part I: theory. Numer Heat Tr B 68:295–316

    Article  ADS  Google Scholar 

  25. Teskeredžić A, Demirdžić I, Muzaferija S (2015) Numerical method for calculation of complete casting process—Part II: validation and application. Numer Heat Tr B 68:317–335

    Article  ADS  Google Scholar 

  26. Balokhonov R, Romanova V, Batukhtina E et al (2016) A mesomechanical analysis of the stress–strain localisation in friction stir welds of polycrystalline aluminium alloys. Meccanica 51(2):319–328

    Article  Google Scholar 

  27. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  MATH  Google Scholar 

  28. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Num Meth Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu WK, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  30. Duarte CA, Oden JT (1996) Hp-cloud–a meshless method to solve boundary-value problems. Comp Meth Appl Mech Eng 139:237–262

    Article  Google Scholar 

  31. Babuska I, Melenk J (1997) The partition of unity method. Int J Num Meth Eng 40:727–758

    Article  MathSciNet  MATH  Google Scholar 

  32. Sajja UK, Felicelli SD (2009) Application of the meshless element-free Galerkin method to freckle formation in directional solidification. Proceedings of the ASME international mechanical engineering congress and exposition, Lake Buena Vista, Florida, USA, 13–19 Nov 2009, paper no. IMECE2009-11257, pp. 553–562. New York: ASME

  33. Atluri SN, Shen S (2002) The meshless local Petrov–Galerkin (MLPG) method. Tech Science Press, USA

    MATH  Google Scholar 

  34. Khosravifard A, Hematiyan MR (2010) A new method for meshless integration in 2D and 3D Galerkin meshfree methods. Eng Anal Bound Elem 34(1):30–40

    Article  MathSciNet  MATH  Google Scholar 

  35. Hematiyan MR, Khosravifard A, Liu GR (2014) A background decomposition method for domain integration in weak-form meshfree methods. Comput Struct 142:64–78

    Article  Google Scholar 

  36. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MathSciNet  MATH  Google Scholar 

  37. Atluri SN, Shen S (2002) The meshless local Petrov–Galerkin (MLPG) method: a simple and less–costly alternative to the finite element and boundary element methods. CMES: Comput Model Eng Sci 3(1):11–51

    MathSciNet  MATH  Google Scholar 

  38. Zhang L, Shen HF, Rong YM et al (2007) Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Mater Sci Eng A 466:71–78

    Article  Google Scholar 

  39. Lewis RW, Ravindran K (2000) Finite element simulation of metal casting. Int J Num Meth Eng 47:29–59

    Article  MATH  Google Scholar 

  40. Voller VR, Swaminathan CR, Thomas BG (1990) Fixed grid techniques for phase change problems: a review. Int J Num Meth Eng 30:875–898

    Article  MATH  Google Scholar 

  41. Nedjar B (2002) An enthalpy-based finite element method for nonlinear heat problems involving phase change. Comput Struct 80(1):9–21

    Article  Google Scholar 

  42. Hsu TR (1986) The finite element methods in thermomechanics. Allen & Unwin, Massachusetts

    Book  Google Scholar 

  43. Ludwik P (1909) Elemente der Technologischen Mechanik. Springer, Verlag Berlin Heidelberg

    Book  MATH  Google Scholar 

  44. Thakur H, Singh KM, Sahoo PK (2011) Phase change problems using the MLPG method. Numer Heat Tr A-Appl 59(6):438–458

    Article  ADS  Google Scholar 

  45. Reddy JN (1993) An introduction to the finite element method. McGraw-Hill, Singapore

    Google Scholar 

  46. Vaghefi R, Hematiyan MR, Nayebi A (2016) Three-dimensional thermo-elastoplastic analysis of thick functionally graded plates using the meshless local Petrov–Galerkin method. Eng Anal Bound Elem 71:34–49

    Article  MathSciNet  Google Scholar 

  47. Vaghefi R, Baradaran GH, Koohkan H (2010) Three-dimensional static analysis of thick functionally graded plates by using meshless local Petrov–Galerkin (MLPG) method. Eng Anal Bound Elem 34(6):564–573

    Article  MathSciNet  MATH  Google Scholar 

  48. Khosravifard A, Hematiyan MR, Wrobel LC (2013) Simultaneous control of solidus and liquidus lines in alloy solidification. Eng Anal Bound Elem 37:211–224

    Article  MathSciNet  MATH  Google Scholar 

  49. Nemat-Alla M, Ahmed KIE, Hassab-Allah I (2009) Elastic–plastic analysis of two dimensional functionally graded materials under thermal loading. Int J Solids Struct 46:2774–2786

    Article  MATH  Google Scholar 

  50. Christman DR, Isbell WM, Babcock SG et al (1971) Measurements of dynamic properties of materials. 6061-T6 Aluminum, Defense Technical Information Center, vol 3, Washington, DC

  51. Ludwig O, Drezet J-M, Martin C-L, Suery M (2005) Rheological behavior of Al-Cu alloys during solidification constitutive modeling, experimental identification, and numerical study. Met Mater Trans A 36:1525–1535

    Article  Google Scholar 

  52. Koric S, Thomas BG (2008) Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws. J Mater Process Technol 197(1):408–418

    Article  Google Scholar 

  53. Kazemi Z, Hematiyan MR, Vaghefi R (2017) Meshfree radial point interpolation method for analysis of viscoplastic problems. Eng Anal Bound Elem 82:172–184

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nayebi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaghefi, R., Nayebi, A., Hematiyan, M.R. et al. Investigating the effects of mushy zone thickness on residual stresses in alloy solidification. Meccanica 53, 905–922 (2018). https://doi.org/10.1007/s11012-017-0742-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0742-x

Keywords

Navigation