Skip to main content
Log in

Dynamic instability of coupled nanobeam systems

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The dynamic instability problem of coupled nanobeam system subjected to compressive axial loading is investigated. The paper is concerned with the stochastic parametric vibrations of nanobeams based on Eringen’s nonlocal elasticity theory of Helmholtz and bi-Helmholtz type of kernel and Euler–Bernoulli beam theory. Each pair of axial forces consists of a constant part and a time-dependent stochastic function. By using the direct Liapunov method, bounds of the almost sure asymptotic instability of a coupled nanobeam system as a function of viscous damping coefficient, stiffness of the coupling elastic medium, variances of the stochastic forces, scale coefficients, and intensity of the deterministic components of axial loading are obtained. Analytical results are verified with the numerical results obtained from the Monte Carlo simulation. Numerical calculations are performed for the Gaussian process with a zero mean as well as a harmonic process with random phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Vu HV, Ordonez AM, Karnopp BH (2000) Vibration of a double-beam system. J Sound Vib 229:807–822

    Article  ADS  MATH  Google Scholar 

  2. Oniszczuk Z (2000) Free transverse vibrations of elastically connected simply supported double-beam complex system. J Sound Vib 232:387–403

    Article  ADS  Google Scholar 

  3. Aranda-Ruiz J, Loya J, Fernandez-Saez J (2012) Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos Struct 94:2990–3001

    Article  Google Scholar 

  4. Abu-Hilal M (2006) Dynamic response of a double Euler–Bernoulli beam due to a moving constant load. J Sound Vib 297:477–491

    Article  ADS  Google Scholar 

  5. De Rosa MA, Lippiello M (2007) Non-classical boundary conditions and DQM for double-beams. Mech Res Commun 34:538–544

    Article  MATH  Google Scholar 

  6. Zhang YQ, Lu Y, Wang SL, Liu X (2008) Vibration and buckling of a double-beam system under compressive axial loading. J Sound Vib 318:341–352

    Article  ADS  Google Scholar 

  7. Zhang YQ, Lu Y, Ma GW (2008) Effect of compressive axial load on forced transverse vibration of a double-beam system. Int J Mech Sci 50:299–305

    Article  MATH  Google Scholar 

  8. Yang Y, Zhang L, Lim CW (2012) Wave propagation in fluid-filled single-walled carbon nanotube on analytically nonlocal Euler-Bernoulli beam model. J Sound Vib 331:1567–1579

    Article  ADS  Google Scholar 

  9. Hajnayeb A, Khadem SE (2012) Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation. J Sound Vib 331:2443–2456

    Article  ADS  Google Scholar 

  10. Kelly SG, Srinivas S (2009) free vibration of elastically connected stretched beams. J Sound Vib 326:883–893

    Article  ADS  Google Scholar 

  11. Pavlović R, Kozić P, Pavlović I (2012) Dynamic stability and instability of a double-beam system subjected to random forces. Int J Mech Sci 62:111–119

    Article  Google Scholar 

  12. Peddieson J, Buchanan GR, McNitt RP (2003) Application of Nonlocal Continuum Models to Nanotechnology. Int J Eng Sci 41:305–312

    Article  Google Scholar 

  13. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  14. Lu P (2007) Dynamic Analysis of Axially Prestressed Micro/Nanobeam Structures Based on Nonlocal Beam Theory. J Appl Phys 101:073504

    Article  ADS  Google Scholar 

  15. Reddy JN (2007) Nonlocal theories for bending, buckling and vibrations of beams. Int J Eng Sci 45:288–307

    Article  MATH  Google Scholar 

  16. Chen YH, Sheu JT (1995) Beam on viscoelastic foundation and layered beam. J Eng Mech ASCE 121:340–344

    Article  Google Scholar 

  17. Murmu T, Adhikari S (2011) Axial instability of double-nanobeam-systems. Phys Lett A 375:601–608

    Article  ADS  Google Scholar 

  18. Murmu T, Adhikari S (2012) Nonlocal elasticity based vibration of initially pre-stressed coupled nanobeam systems. Eur J Mech A Solid 34:52–62

    Article  MathSciNet  Google Scholar 

  19. Tylikowski A (2011) Stochastic stability via nonlocal continuum mechanics. Probabilist Eng Mech 26:76–80

    Article  Google Scholar 

  20. Tylikowski A (2011) Dynamical Instability Analysis of Nanotubes Using Nonlocal Shear Beam Theory. Int J Bifurcat Chaos 21:3047–3052

    Article  MATH  Google Scholar 

  21. Potapov VD (2013) Stability via Nonlocal Continuum Mechanics. Int J Solids Struct 50:637–641

    Article  Google Scholar 

  22. Andjelić T (1973) Tensor calculus, 3rd edn. Naučna knjiga, Belgrade (in Serbian)

    Google Scholar 

  23. Lazar M, Maugin GA, Aifantis EC (2006) On a theory of nonlocal elasticity of bi-Helmholtz type and some applications. Int J Solids Struct 43:1404–1421

    Article  MathSciNet  MATH  Google Scholar 

  24. Kozin F (1972) Stability of linear stochastic systems. Lect Notes Math 294:186–229

    Article  MathSciNet  Google Scholar 

  25. Parks PC, Pritchard AJ (1969) On the construction and use of Liapunov functionals, vol 20. In: Proceedings of the 4th IFAC Congress, Technical Session, Warszawa, pp 59–73

  26. Plaut RH, Infante EF (1970) On the stability of some continuous systems subjected to random excitation. J Appl Mech T ASME 37:623–628

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of the Republic of Serbia, through Project No. 174011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Pavlović.

Appendices

Appendix 1

Assuming that

$$f_{o1} < \frac{{\alpha_{m}^{2} }}{{{{\mathscr{L}}}_{m} }} + \frac{K}{{\alpha_{m}^{2} }},\quad f_{o2} < \frac{{\alpha_{m}^{2} }}{{{{\mathscr{L}}}_{m} }} + \frac{K}{{\alpha_{m}^{2} }},$$
(59)

which implies the condition that the beams, separated and lying on the elastic layer, are statically stable. For the Helmholtz kernel, the right sides of relations (59) are equivalent with relation (40) in Murmu and Adhikari [17]. Relation (34) is fulfilled if:

$$f_{o1} f_{o2} - \left( {\frac{{\alpha_{m}^{2} }}{{{{\mathscr{L}}}_{m} }} + \frac{K}{{\alpha_{m}^{2} }}} \right)(f_{o1} + f_{o2} ) + \left( {\frac{{\alpha_{m}^{2} }}{{{{\mathscr{L}}}_{m} }} + \frac{K}{{\alpha_{m}^{2} }}} \right)^{2} - \frac{K}{{\alpha_{m}^{4} }} \ge 0.$$
(60)

By introducing the ratio of the axial load χ = f o2/f o1, from relation (60) one obtains

$$f_{o1(1,2)} = \frac{{(1 + \chi )\left( {\frac{{\alpha_{m}^{2} }}{{{{\mathscr{L}}}_{m} }} + \frac{K}{{\alpha_{m}^{2} }}} \right) \mp \sqrt {(1 + \chi )^{2} \left( {\frac{{\alpha_{m}^{2} }}{{{{\mathscr{L}}}_{m} }} + \frac{K}{{\alpha_{m}^{2} }}} \right) + 4\chi K^{2} } }}{2\chi }.$$
(61)

For χ = 1, buckling loads obtained from relations (61) are equivalent with relations (36) and (37) obtained by Murmu and Adhikari [17].The critical buckling load is

$$f_{o1}^{cr} = \frac{{(1 + \chi )\left( {\frac{{\alpha_{m}^{2} }}{{{{\mathscr{L}}}_{m} }} + \frac{K}{{\alpha_{m}^{2} }}} \right) - \sqrt {(1 - \chi )^{2} \left( {\frac{{\alpha_{m}^{2} }}{{{{\mathscr{L}}}_{m} }} + \frac{K}{{\alpha_{m}^{2} }}} \right)^{2} + 4\chi K^{2} } }}{2\chi }.$$
(62)

Liapunov functional is positive definite if deterministic components of axial loadings are smaller than critical buckling loads, i.e. if static stability conditions (59) and (60) for a double-nanobeam system are satisfied.

Appendix 2

The coefficients in biquadratic Eq. (46)

$$\begin{aligned} b_{0m} = & \, K\left( {2\beta^{2} + 2\frac{{\alpha_{m}^{4} }}{{{{\mathscr{L}}}_{m} }} - f_{o1} \alpha_{m}^{2} - f_{o2} \alpha_{m}^{2} } \right) \\ & + \left( {\beta^{2} + \frac{{\alpha_{m}^{4} }}{{{{\mathscr{L}}}_{m} }} - f_{o1} \alpha_{m}^{2} } \right)\left( {\beta^{2} + \frac{{\alpha_{m}^{4} }}{{{{\mathscr{L}}}_{m} }} - f_{o2} \alpha_{m}^{2} } \right), \\ b_{1m} = & \left( {K + \beta^{2} + \frac{{\alpha_{m}^{4} }}{{{{\mathscr{L}}}_{m} }} - f_{o2} \alpha_{m}^{2} } \right)\left( {2\beta^{2} + \alpha_{m}^{2} f_{1} (t)} \right)^{2} \\ & + \,\left( {K + \beta^{2} + \frac{{\alpha_{m}^{4} }}{{{{\mathscr{L}}}_{m} }} - f_{o1} \alpha_{m}^{2} } \right)\left( {2\beta^{2} + \alpha_{m}^{2} f_{2} (t)} \right)^{2} , \\ b_{2m} = & \left( {2\beta^{2} + \alpha_{m}^{2} f_{1} (t)} \right)^{2} \left( {2\beta^{2} + \alpha_{m}^{2} f_{2} (t)} \right)^{2} . \\ \end{aligned}$$
(63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlović, I., Pavlović, R. & Janevski, G. Dynamic instability of coupled nanobeam systems. Meccanica 51, 1167–1180 (2016). https://doi.org/10.1007/s11012-015-0278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-015-0278-x

Keywords

Navigation