Skip to main content

Advertisement

Log in

Modification of the mechanical properties of carbon nanotube arrays using electron irradiation induced oxidation

  • Experimental Solid Mechanics
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper describes a method of altering the compliance and adhesion of nominally vertically aligned multi-walled carbon nanotube (CNT) arrays (“turfs”) using oxidation caused by electron irradiation from typical imaging conditions in a scanning electron microscope. A combination of electron microscopy and infrared spectroscopy demonstrates that typical imaging conditions lead to the deposition and further oxidation of amorphous carbon on CNT turfs. The elastic modulus of the turfs, as measured by nanoindentation, decreases from approximately 100 to 50 MPa after irradiation and exposure to ambient laboratory conditions. The adhesion between the diamond indenter tip and turf is effectively eliminated once the amorphous carbon coated the turfs. In addition, the CNT turf exhibits decreased energy dissipation capabilities and a decreased viscoelastic response during contact loading. This suggests that further research on characterization of CNT turfs should consider the possibility that electron beam exposure during imaging may impact the subsequently measured properties, and that to lessen these effects, imaging times and accelerating voltages should be minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hone J, Llaguno MC, Nemes NM et al (2000) Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77:666–668. doi:10.1063/1.127079

    Article  ADS  Google Scholar 

  2. Xu Y, Zhang Y, Suhir E, Wang X (2006) Thermal properties of carbon nanotube array used for integrated circuit cooling. J Appl Phys 100:074302–074302–074302–074305. doi:10.1063/1.2337254

    Google Scholar 

  3. Worsley MA, Kucheyev SO, Satcher JH, et al. (2009) Mechanically robust and electrically conductive carbon nanotube foams. Applied Physics Letters 94:073115–073115–3. doi: doi:10.1063/1.3086293

  4. Hawkes, PW (1992) Advances in electronics and electron physics, Academic Press

  5. Ni B, Andrews R, Jacques D et al (2001) A Combined Computational and Experimental Study of Ion-Beam Modification of Carbon Nanotube Bundles. J Phys Chem B 105:12719–12725. doi:10.1021/jp0123233

    Article  Google Scholar 

  6. Ni Z, Li Q, Yan L et al (2008) Welding of multi-walled carbon nanotubes by ion beam irradiation. Carbon 46:376–378. doi:10.1016/j.carbon.2007.11.018

    Article  Google Scholar 

  7. Hazra KS, Koratkar NA, Misra DS (2011) Improved field emission from multiwall carbon nanotubes with nano-size defects produced by ultra-low energy ion bombardment. Carbon 49:4760–4766. doi:10.1016/j.carbon.2011.06.085

    Article  Google Scholar 

  8. Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials. J Appl Phys 107:071301–071301–071301–071370. doi:10.1063/1.3318261

    Article  Google Scholar 

  9. Mølhave K, Gudnason SB, Pedersen AT et al (2007) Electron irradiation-induced destruction of carbon nanotubes in electron microscopes. Ultramicroscopy 108:52–57. doi:10.1016/j.ultramic.2007.03.001

    Article  Google Scholar 

  10. Guan L, Shi Z, Gu Z (2005) Exfoliation of single-walled carbon nanotube bundles under electron beam irradiation. Carbon 43:1101–1103. doi:10.1016/j.carbon.2004.11.045

    Article  Google Scholar 

  11. Lim H, Jung H, Joo S-K (2003) Control of carbon nanotube’s shape by ion bombardment. Microelectron Eng 69:81–88. doi:10.1016/S0167-9317(03)00274-0

    Article  ADS  Google Scholar 

  12. Wang MS, Peng L-M, Wang JY, Chen Q (2006) Shaping Carbon Nanotubes and the Effects on Their Electrical and Mechanical Properties. Adv Funct Mater 16:1462–1468. doi:10.1002/adfm.200500706

    Article  Google Scholar 

  13. Kis A, Csányi G, Salvetat J-P et al (2004) Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat Mater 3:153–157. doi:10.1038/nmat1076

    Article  ADS  Google Scholar 

  14. Kiang C-H, Goddard WA, Beyers R, Bethune DS (1996) Structural Modification of Single-Layer Carbon Nanotubes with an Electron Beam. J Phys Chem 100:3749–3752. doi:10.1021/jp952636w

    Article  Google Scholar 

  15. Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359:707–709. doi:10.1038/359707a0

    Article  ADS  Google Scholar 

  16. McClain D, Dong L, Pan C et al (2005) Synthesis and Microanalysis of Aligned Carbon Nanotube Arrays. Microsc Microanal 11:1920–1921. doi:10.1017/S1431927605507773

    Google Scholar 

  17. Kuo BC (1962) Automatic control systems. Prentice-Hall

  18. McDonell K, Proust G, Shen L (2010) Effects of electron irradiation on single-walled carbon nanotubes. IOP Conf Ser: Mater Sci Eng 10:012180. doi:10.1088/1757-899X/10/1/012180

    Article  Google Scholar 

  19. Qiu A, Fowler SP, Jiao J et al (2011) Time-dependent contact behavior between diamond and a CNT turf. Nanotechnology 22:295702. doi:10.1088/0957-4484/22/29/295702

    Article  Google Scholar 

  20. Qiu A, Bahr DF, Zbib AA et al (2011) Local and non-local behavior and coordinated buckling of CNT turfs. Carbon 49:1430–1438. doi:10.1016/j.carbon.2010.12.011

    Article  Google Scholar 

  21. Zbib AA, Mesarovic SD, Lilleodden ET et al (2008) The coordinated buckling of carbon nanotube turfs under uniform compression. Nanotechnology 19:175704. doi:10.1088/0957-4484/19/17/175704

    Article  ADS  Google Scholar 

  22. Cao A, Dickrell PL, Sawyer WG et al (2005) Super-Compressible Foamlike Carbon Nanotube Films. Science 310:1307–1310. doi:10.1126/science.1118957

    Article  ADS  Google Scholar 

  23. Bradford PD, Wang X, Zhao H, Zhu YT (2011) Tuning the compressive mechanical properties of carbon nanotube foam. Carbon 49:2834–2841. doi:10.1016/j.carbon.2011.03.012

    Article  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge the financial support of the National Science Foundation under the NIRT program, Grant CMMI-0856436 and discussions with Prof. David Field and Prof. Sinisa Mesarovic of WSU. TEM experiments were performed at the Franceschi Microscopy and Imaging Center, Washington State University, and the assistance of Steven Klase and Prof. Ursula Mazur at WSU with the FTIR analysis is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anqi Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, A., Bahr, D.F. Modification of the mechanical properties of carbon nanotube arrays using electron irradiation induced oxidation. Meccanica 50, 575–583 (2015). https://doi.org/10.1007/s11012-014-9956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-9956-3

Keywords

Navigation