Skip to main content
Log in

Compliance characteristic and force control of antagonistic actuation by pneumatic artificial muscles

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper presents compliance characteristics of antagonistic actuation by the pair of Mckibben pneumatic artificial muscles and force tracking using a sliding control scheme for safe human-robot interaction. The variable stiffness capability of artificial muscles was investigated carefully by resilience tests from a biased initial position and impact tests based on an intended collision between a stationary object and a rotating linkage actuated by pneumatic artificial muscles. Considering the frequency response analysis of a whole pneumatic circuit for artificial muscles, a sliding control system was designed to control contacting force between a linkage actuated by artificial muscles and a rigid environment. Experimental results showed that the proposed force control scheme gave better tracking performance under model uncertainties due to air flow than the conventional PID controller whose feedback gains were well-tuned experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5(1):90–98

    Article  MathSciNet  Google Scholar 

  2. Hirzinger G, Albu-Schaffer A, Hahnle M, Schaefer I, Sporer N (2001) On a new generation of torque controlled light-weight robots. In: Proceedings of the 2001 IEEE international conference on robotics and automation. IEEE, New York, pp 3356–3363

    Google Scholar 

  3. Bicchi A, Tonietti G (2004) Fast and “soft-arm” tactics. IEEE Robot Autom Mag 11(2):22–33

    Article  Google Scholar 

  4. Ikuta K, Ishii H, Nokata M (2003) Safety evaluation method of design and control for human-care robots. Int J Robot Res 22(5):281–297

    Article  Google Scholar 

  5. Pratt GA, Williamson MM (1995) Series elastic actuators. In: Proceedings of the 2001 IEEE/RSJ international conference on intelligent robotics and systems. IEEE, New York, pp 399–406

    Google Scholar 

  6. Migliore SA, Brown EA, DeWeerth SP (2005) Biologically inspired joint stiffness control. In: Proceedings of the 2006 IEEE international conference on robotics and automation. IEEE, New York, pp 4508–4513

    Google Scholar 

  7. Wolf S, Hirzinger G (2008) A new variable stiffness design: matching requirements of the next robot generation. In: 2008 IEEE international conference on robotics and automation. IEEE, New York, pp 1741–1746

    Chapter  Google Scholar 

  8. Park JJ, Kim HS, Song JB (2009) Safe robot arm with safe joint mechanism using nonlinear spring system for collision safety. In: Proceedings of the 2009 IEEE international conference on robotics and automation. IEEE, New York, pp 3371–3376

    Chapter  Google Scholar 

  9. Schulte H (1961) The characteristics of the McKibben artificial muscle. In: The application of external power in prosthetics and orthotics, pp 94–115

    Google Scholar 

  10. Daerden F, Lefeber D (2002) Pneumatic artificial muscles: actuators for robotics and automation. Eur J Mech Environ Eng 47(1):11–21

    Google Scholar 

  11. Inoue K (1988) Rubbertuators and applications for robots. In: Proceedings of the 4th international symposium on robotics research. MIT Press, Cambridge, pp 57–63

    Google Scholar 

  12. Chou CP, Hannaford B (1996) Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans Robot Autom 12(1):90–102

    Article  Google Scholar 

  13. Vo-Minh T, Tjahjowidodo T, Ramon H, Van Brussel H (2011) A new approach to modeling hysteresis in a pneumatic artificial muscle using the Maxwell-slip model. IEEE/ASME Trans Mechatron 16(1):177–186

    Article  Google Scholar 

  14. Tondu B, Lopez P (2000) Modeling and control of McKibben artificial muscle robot actuators. IEEE Control Syst Mag 20(2):15–38

    Article  Google Scholar 

  15. Tsagarakis N, Caldwell D (2000) Improved modelling and assessment of pneumatic muscle actuators. In: Proceedings of the 2000 IEEE international conference on robotics and automation. IEEE, New York, pp 3641–3646

    Google Scholar 

  16. Kothera C, Jangid M, Sirohi J, Wereley N (2009) Experimental characterization and static modeling of Mckibben actuators. J Mech Des 131:091010

    Article  Google Scholar 

  17. Kang B, Kothera C, Woods B, Wereley N (2009) Dynamic modeling of Mckibben pneumatic artificial muscles for antagonistic actuation. In: Proceedings of the 2009 IEEE international conference on robotics and automation. IEEE, New York, pp 182–187

    Chapter  Google Scholar 

  18. Tonietti G, Bicchi A (2002) Adaptive simultaneous position and stiffness control for a soft robot arm. In: 2002 IEEE/RSJ international conference on intelligent robots and systems, Lausanne, pp 1992–1997

    Google Scholar 

  19. Shen X (2010) Nonlinear model-based control of pneumatic artificial muscle servo systems. Control Eng Pract 18(3):311–317

    Article  Google Scholar 

  20. Yaegashi K, Saga N, Satoh T (2005) Control of robot arm using pneumatic artificial muscle with spherical joint. In: 2005 IEEE international conference on mechatronics and automation. IEEE, New York, pp 1093–1098

    Chapter  Google Scholar 

  21. Van Damme M, Beyl P, Vanderborght B, Versluys R, Van Ham R, Vanderniepen I, Daerden F, Lefeber D (2010) The safety of a robot actuated by pneumatic muscles—a case study. Int J Soc Robot 2(3):289–303

    Article  Google Scholar 

  22. Tsagarakis NG, Caldwell DG (2003) Development and control of a ‘soft-actuated’ exoskeleton for use in physiotherapy and training. Auton Robots 15(1):21–33

    Article  Google Scholar 

  23. Dhanu Singh M, Liem K, Leontjievs V, Kecskeméthy A (2011) A fluidic-muscle driven force-controlled parallel platform for physical simulation of virtual spatial force-displacement laws. Meccanica 46(1):171–182

    Article  MATH  Google Scholar 

  24. Sardellitti I, Park J, Shin D, Khatib O (2007) Air muscle controller design in the distributed macro-mini (DM^2) actuation approach. In: IEEE/RSJ international conference on intelligent robots and systems, IROS 2007. IEEE, New York, pp 1822–1827

    Chapter  Google Scholar 

  25. Sardellitti I, Palli G, Tsagarakis NG, Caldwell DG (2010) Antagonistically actuated compliant joint: torque and stiffness control. In: 23rd IEEE/RSJ 2010 international conference on intelligent robots and systems, IROS, Taipei, pp 1909–1914

    Chapter  Google Scholar 

  26. Richer E, Hurmuzlu Y (2000) A high performance pneumatic force actuator system, part II: nonlinear controller design. J Dyn Syst Meas Control 122(3):426–434

    Article  Google Scholar 

  27. Jutras D, Bigras P (2006) Control of an actuator made of two antagonist McKibben muscles via LMI optimization. In: IEEE ISIE. IEEE, New York, pp 3072–3077

    Google Scholar 

  28. Bigras P (2005) Sliding-mode observer as a time-variant estimator for control of pneumatic systems. J Dyn Syst Meas Control 127:499–502

    Article  Google Scholar 

  29. Akkharaphong E (2009) Variable structure robust state observer design for a pneumatic artificial muscle actuator. In: ECTI-CON. IEEE, New York, pp 399–402

    Google Scholar 

  30. Thongchai S, Goldfarb M, Sarkar N, Kawamura KA (2010) Frequency modeling method of rubbertuators for control application in an IMA framework. In: 2001 American control conference, Arlington, VA, pp 1710–1714

    Google Scholar 

  31. Jean-Jacques E, Slotine WL (1991) Applied nonlinear control. Prentice Hall, New York

    MATH  Google Scholar 

  32. Ziegler J, Nichols N (1942) Optimum settings for automatic controllers. Trans ASME 64(11)

Download references

Acknowledgements

This work was supported by the 2013 research fund of National Research Foundation of Korea (2013R1A1A2012558). The author acknowledged Si-Bok Lee, an undergraduate student for his enormous help to experimental works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Soo Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, BS. Compliance characteristic and force control of antagonistic actuation by pneumatic artificial muscles. Meccanica 49, 565–574 (2014). https://doi.org/10.1007/s11012-013-9811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9811-y

Keywords

Navigation