Skip to main content
Log in

Nomographs for synthesis of epicyclic-type automatic transmissions

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper presents a MATLAB optimization technique for the determination of the gear ratios of epicyclic-type transmission mechanisms for a given set of velocity ratios. First, all of the feasible clutching sequences are enumerated directly without using complicated techniques. Then, for the transmission mechanism with the associated clutching sequence graph, the overall velocity ratios are derived and expressed in terms of the gear ratios of all the mating gears. Next, following the general trend of increased shift stages and a wider range of velocity ratios, the numbers of teeth of all gears are estimated by MATLAB optimization technique in a single run.

Ravigneaux gear mechanisms are used as design examples. The methodology can be applied to any transmission mechanism depending on its kinematic and geometric constraints. New five- and six-velocity automatic transmissions are enumerated from the Ravigneaux gear mechanism. It is a major breakthrough to design a completely satisfactory six-speed automatic transmission from the Ravigneaux gear mechanism since it has only eight links. The new design makes use of the benefits of the Ravigneaux gear train and overcomes the previous art difficulties. This structural design has realized a six-speed automatic transmission, while having minimal number of clutches, and brakes. It is also low cost due to adoption of the conventional available Ravigneaux gear train.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tsai LW (2001) Mechanism design: enumeration of kinematic structures according to function. CRC Press, Boca Raton

    Google Scholar 

  2. Wilfinger E, Thompson J (1988) Borg–Warner Australia Model 85 automatic transmission. SAE paper no. 880480

  3. Scherer H (2003) ZF 6-speed automatic transmission for passenger cars. SAE paper no. 2003-01-0596

  4. Katou N, Taniguchi T, Tsukamoto K (2004) Aisin AW new six-speed automatic transmission for FWD vehicles. SAE paper no. 2004-01-0651

  5. Mogalapalli SN, Magrab EB, Tsai L-W (1993) A CAD system for the optimization of gear ratios for automotive automatic transmissions. SAE paper no. 930675. http://papers.sae.org/930675

  6. Esmail EL (2008) Nomographs for enumeration of clutching sequences associated with epicyclic type automatic transmission mechanisms. In: ASME international mechanical engineering congress and exposition (IMECE08), October 31–November 6, 2008, Boston, Massachusetts, USA, vol. 17, Transportation systems, paper No. 66409, pp. 165–174

  7. Esmail EL (2009) Emir J Eng Res, 14(1) 29–38

    Google Scholar 

  8. Simionescu PA, Beale D, Dozier GV (2006) Teeth-number synthesis of a multispeed planetary transmission using an estimation of distribution algorithm. ASME J Mech Des 128:108–115

    Article  Google Scholar 

  9. Esmail EL, Salih KH (2011) Synthesis and optimization of epicyclic-type automatic transmissions based on nomographs. Al-Qadisiya J Eng Sci 4(3):168–185

    Google Scholar 

  10. Hwang WM, Huang YL (2005) Configuration design of six-speed automatic transmissions with two-degree-of-freedom planetary gear trains. Trans Can Soc Mech Eng 29(1):41–55

    MathSciNet  Google Scholar 

  11. Hsu CH (2002) An analytic methodology for the kinematic synthesis of epicyclic gear mechanisms. ASME J Mech Des 124:574–576

    Article  Google Scholar 

  12. Hsu CH, Huang RH (2009) Systematic design of six-speed automatic transmissions with an eight-link two-DOF Ravigneaux gear mechanism. ASME J Mech Des 131:011004-1–011004-8

    Article  Google Scholar 

  13. Nozaki Y, Tanaka Y, Tomomatsu H, Tsukamoto H, Hanji F (2004) Toyotas new six-speed automatic transmission A761E for RWD vehicles. SAE paper no. 2004-01-0650

  14. Esmail EL (2007) Kinematic nomographs of epicyclic-type transmission mechanisms. Emir J Eng Res 12(3):47–55

    Google Scholar 

  15. Hsieh HL, Tsai LW (1998) The selection of a most efficient clutching sequence associated with automatic transmission. ASME J Mech Des 120:514–519

    Article  Google Scholar 

  16. Hsieh HI, Tsai LW (1996) Kinematic analysis of epicyclic-type transmission mechanisms using the concept of fundamental geared entities. Trans Am Soc Mech Eng 118:294–299

    Google Scholar 

  17. Jesus Cervantes-Sanchez J, Rico-Martinez JM, Panduro-Calvario C (2012) A general and systematic framework for the kinematic analysis of complex gear systems. Meccanica. doi:10.1007/s11012-010-9401-1

    Google Scholar 

  18. Buchsbaum F, Freudenstein F (1970) Synthesis of kinematic structure of geared kinematic chains and other mechanisms. J Mech Mach Theory 5:357–392

    Google Scholar 

  19. Hahn BD, Valentine DT (2007) Essential MATLAB® for engineers and scientists, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam L. Esmail.

Appendix

Appendix

(1) MATLAB objective function m.file (ravigneauxs.m)

function f=ravigneauxs(x)

RUD1=(x(1)*x(2))/x(4);

RUD2=((x(1)*x(2))-(x(1)*x(5)))/(x(4)- (x(1)*x(5)));

RUD3=((x(1)*x(2))-x(3))/(x(4)-x(3));

RDD=1;

ROD1=x(3)/(x(3)-x(4));

ROD2=-(x(1)*x(5))/(x(4)-(x(1)*x(5)));

RR=(x(3)/x(4));

DRUD1=3.3000;DRUD2=2.1500;DRUD3=1.6133;DRDD=1.0000;DROD1=0.7333;DROD2=0.5000;

DRR=-2.7500;Theta=110.0000;Z(4)=132;M=2;

f=(RUD1/DRUD1-1)^2+(RUD2/DRUD2-1)^2+(RUD3/DRUD3-1)^2+(RDD/DRDD-1)^2+(ROD1/DROD1-1)^2+(ROD2/DROD2-1)^2+(RR/DRR-1)^2;

(2) MATLAB Nonlinear constraints m.file (ravigneauxs_confun.m)

function [c, ceq]=ravigneauxs_confun(x)

RUD1=(x(1)*x(2))/x(4);

RUD2=((x(1)*x(2))-(x(1)*x(5)))/(x(4)- (x(1)*x(5)));

RUD3=((x(1)*x(2))-x(3))/(x(4)-x(3));

RDD=1;

ROD1=x(3)/(x(3)-x(4));

ROD2=-(x(1)*x(5))/(x(4)-(x(1)*x(5)));

RR=(x(3)/x(4));

M=2;

c =[x(4)-(x(1)*x(2));

x(3)-(x(1)*x(5));

abs((1-1/x(3))^2+((1/x(1)*x(2))-(1/x(1)))^2-(1/(M)^2)*(1-1/x(1))^2)-abs(2*((1/x(1)*x(2))-(1/x(1)))*(1-1/x(3)));

acosd(((1-1/x(3))^2+((1/(x(1)*x(2)))-(1/x(1)))^2-(1/(M)^2)*(1-1/x(1))^2)/(2*((1/(x(1)*x(2)))-(1/x(1)))*(1-1/x(3))))+asind(1/(1-(1/x(2))))+asind(1/(1-(1/x(3))))-110.000;

1.3200-(RUD1/RUD2);1.3200-(RUD2/RUD3);1.3200-(RUD3/RDD);1.3200-(RDD/ROD1);1.3200-(ROD1/ROD2);abs((RUD1/RUD2)-(RUD2/RUD3))-0.3000;abs((RUD2/RUD3)-(RUD3/RDD))-0.3000;abs((RUD3/RDD)-(RDD/ROD1))-0.3000;abs((RDD/ROD1)-(ROD1/ROD2))-0.3000;0.5000-ROD2;abs(RUD2)-abs(RR);abs(RR)-abs(RUD1);];

ceq =[(1/x(4))+(1/x(3))-2;(1/x(5))+(1/x(2))-2;];

(3) MATLAB optimization m.file (ravigneauxs_main_file.m)

function [x,fval,exitflag,output,lambda,grad,hessian]=Ravigneauxs(x0,lb,ub)

x0=[0 0 0 0 0]

lb=[-Inf -Inf -Inf 0 0]

ub=[0 0 0 1 1]

options = optimset;

DRUD1=3.3000;DRUD2=2.1500;DRUD3=1.6133;DRDD=1.0000;DROD1=0.7333;DROD2=0.5000;DRR=-2.7500; Theta=110.0000;Z(4)=132;M=2;

options = optimset(options,’Display’,’iter’);

options = optimset(options,’PlotFcns’,{ @optimplotx @optimplotfunccount @optimplotfval @optimplotconstrviolation @optimplotstepsize @optimplotfirstorderopt });

options = optimset(options,’Algorithm’,’interior-point’);

options = optimset(options,’Diagnostics’,’on’);

[x,fval,exitflag,output,lambda,grad,hessian] = ...

fmincon(@ravigneauxs,x0,[],[],[],[],lb,ub,@ravigneauxs_confun,options);

RUD1=(x(1)*x(2))/x(4);

RUD2=((x(1)*x(2))-(x(1)*x(5)))/(x(4)- (x(1)*x(5)));

RUD3=((x(1)*x(2))-x(3))/(x(4)-x(3));

RDD=1;

ROD1=(x(3)/(x(3)-x(4)));

ROD2=-(x(1)*x(5))/(x(4)-(x(1)*x(5)));

RR=(x(3)/x(4));

THETA=acosd(((1-1/x(3))^2+((1/(x(1)*x(2)))-(1/x(1)))^2-(1/(M)^2)*(1-1/x(1))^2)/(2*((1/(x(1)*x(2)))-(1/x(1)))*(1-1/x(3))))+asind(1/(1-(1/x(2))))+asind(1/(1-(1/x(3))));

y(4)=Z(4);y(6)=(y(4)*x(4));y(1)=-(y(6)/x(3));y(5)=-(y(6)/x(1));y(2)=-(y(5)/x(2));

y(7)=(y(5)/x(5));Z(6)=int16(y(6));Z(1)=int16(y(1));Z(5)=int16(y(5));Z(2)=int16(y(2)); Z(7)=int16(y(7));

y(8)=Z(6)/M;Z(8)=int16(y(8));y(9)=-Z(8)/x(1);Z(9)=int16(y(9));

cx(1)=-Z(6)/Z(5);cx(2)=-Z(5)/Z(2);cx(3)=-Z(6)/Z(1);cx(4)=Z(6)/Z(4);cx(5)=Z(5)/Z(7);

CRUD1=(cx(1)*cx(2))/cx(4);

CRUD2=((cx(1)*cx(2))-(cx(1)*cx(5)))/(cx(4)- (cx(1)*cx(5)));

CRUD3=((cx(1)*cx(2))-cx(3))/(cx(4)-cx(3));

CRDD=1;

CROD1=(cx(3)/(cx(3)-cx(4)));

CROD2=-(cx(1)*cx(5))/(cx(4)-(cx(1)*cx(5)));

CRR=(cx(3)/cx(4));

CM=Z(6)/Z(8);

THETAC=acosd(((1-1/cx(3))^2+((1/(cx(1)*cx(2)))-(1/cx(1)))^2-(1/(M)^2)*(1-1/cx(1))^2)/(2*((1/(cx(1)*cx(2)))-(1/cx(1)))*(1-1/cx(3))))+asind(1/(1-(1/cx(2))))+asind(1/(1-(1/cx(3))));

THETACZ=acosd(((Z(2)+Z(5))^2+(Z(1)+Z(6))^2-(Z(8)+Z(9))^2)/(2*(Z(2)+Z(5))*(Z(1)+Z(6))))+asind(Z(5)/

(Z(2)+Z(5)))+asind(Z(6)/(Z(6)+Z(1)));

e1=CRUD1/CRUD2;e2=CRUD2/CRUD3;e3=CRUD3/CRDD;e4=CRDD/CROD1;e5=CROD1/CROD2;

s1=e1-e2;s2=e2-e3;s3=e3-e4;s4=e4-e5;GR=[M CM]

Desired_Velocity_Ratios_R=[DRUD1 DRUD2 DRUD3 DROD1 DROD2 DRR]

DESIRED_INCLUDED_ANGLE=[Theta]

Optimal_Velocity_Ratios_R=[RUD1 RUD2 RUD3 ROD1 ROD2 RR]

OPTIMAL_INCLUDED_ANGLE=[THETA]

Number_of_teeth=[y(1) y(2) y(4) y(5) y(6) y(7) y(8) y(9)]

Number_of_teeth=[Z(1) Z(2) Z(4) Z(5) Z(6) Z(7) Z(8) Z(9)]

Optimal_Velocity_Ratios_CR=[CRUD1 CRUD2 CRUD3 CRDD CROD1 CROD2 CRR]

SRD=[e1 e2 e3 e4 e5 s1 s2 s3 s4]

OPTIMAL_INCLUDED_ANGLE_C=[THETAC]

INCLUDED_ANGLE_Z=[THETACZ]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esmail, E.L. Nomographs for synthesis of epicyclic-type automatic transmissions. Meccanica 48, 2037–2049 (2013). https://doi.org/10.1007/s11012-013-9721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9721-z

Keywords

Navigation