Skip to main content
Log in

Stokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: effect of stress jump condition

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The quasisteady axisymmetrical flow of an incompressible viscous fluid past an assemblage of porous concentric spherical shell-in-cell model is studied. Boundary conditions on the cell surface that correspond to the Happel, Kuwabara, Kvashnin and Cunningham/Mehta-Morse models are considered. At the fluid-porous interfaces, the stress jump boundary condition for the tangential stresses along with continuity of normal stress and velocity components are employed. The Brinkman’s equation in the porous region and the Stokes equation for clear fluid are used. The hydrodynamic drag force acting on the porous shell by the external fluid in each of the four boundary conditions on the cell surface is evaluated. It is found that the normalized mobility of the particles (the hydrodynamic interaction among the porous shell particles) depends not only on the permeability of the porous shells and volume fraction of the porous shell particles, but also on the stress jump coefficient. As a limiting case, the drag force or mobility for a suspension of porous spherical shells reduces to those for suspensions of impermeable solid spheres and of porous spheres with jump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Happel J, Brenner H (1983) Low Reynolds number hydrodynamics, Martinus Nijoff, The Hague, The Netherlands

    Google Scholar 

  2. Keh HJ, Tu HJ (2000) Osmophoresis in a dilute suspension of spherical vesicles. Int J Multiph Flow 26:125–145

    Article  MATH  Google Scholar 

  3. Ohshima H (2000) Cell model calculation for electrokinetic phenomena in concentrated suspensions: an Onsager relation between sedimentation potential and electrophoretic mobility. Adv Colloid Interface Sci 88:1–18

    Article  Google Scholar 

  4. Faltas MS, Saad EI (2011) Stokes flow past an assemblage of slip eccentric spherical particle-in-cell models. Math Methods Appl Sci 34:1594–1605

    Article  MathSciNet  MATH  Google Scholar 

  5. Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res 1:27–34

    Article  Google Scholar 

  6. Matsumoto K, Suganuma A (1977) Settling velocity of a permeable model floc. Chem Eng Sci 32:445–447

    Article  Google Scholar 

  7. Masliyah JH, Polikar M (1980) Terminal velocity of porous spheres. Can J Chem Eng 58:299–302

    Article  Google Scholar 

  8. Shivakumara IS, Savitha MN, Chavaraddi KB, Devaraju N (2009) Bifurcation analysis for thermal convection in a rotating porous layer. Meccanica 44:225–238

    Article  MATH  Google Scholar 

  9. Nanjundappa CE, Shivakumara IS, Ravisha M (2010) The onset of buoyancy-driven convection in a ferromagnetic fluid saturated porous medium. Meccanica 45:213–226

    Article  MathSciNet  MATH  Google Scholar 

  10. Srivastava AC, Srivastava N (2005) Flow past a porous sphere at small Reynolds numbers. Z Angew Math Phys 56:821–835

    Article  MathSciNet  MATH  Google Scholar 

  11. Srivastava AC, Srivastava N (2006) Flow of a viscous fluid at small Reynolds number past a porous sphere with a solid core. Acta Mech 186:161–172

    Article  MATH  Google Scholar 

  12. Kohr M, Prakash J, Raja Sekhar GP, Wendland WL (2009) Expansions at small Reynolds numbers for the flow past a porous circular cylinder. Appl Anal 88:1093–1114

    Article  MathSciNet  MATH  Google Scholar 

  13. Saad EI (2010) Translation and rotation of a porous spheroid in a spheroidal container. Can J Phys 88:689–700

    Article  ADS  Google Scholar 

  14. Prakash J, Raja Sekhar GP (2012) Arbitrary oscillatory Stokes flow past a porous sphere using Brinkman model. Meccanica 47:1079–1095

    Article  MathSciNet  Google Scholar 

  15. Happel J (1958) Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. AIChE J 4:197–201

    Article  MathSciNet  Google Scholar 

  16. Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jpn 14:527–532

    Article  MathSciNet  ADS  Google Scholar 

  17. Kvashnin AG (1979) Cell model of suspension of spherical particles. Fluid Dyn 14:598–602

    Article  ADS  MATH  Google Scholar 

  18. Mehta GD, Morse TF (1975) Flow through charged membranes. J Chem Phys 63:1878–1889

    Article  ADS  Google Scholar 

  19. Cunningham E (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc R Soc Lond Ser A 83:357–369

    Article  ADS  MATH  Google Scholar 

  20. Datta S, Deo S (2002) Stokes flow with slip and Kuwabara boundary conditions. Proc Indian Acad Sci Math Sci 112:463–475

    Article  MathSciNet  MATH  Google Scholar 

  21. Deo S, Gupta BR (2009) Stokes flow past a swarm of porous approximately spheroidal particles with Kuwabara boundary condition. Acta Mech 203:241–254

    Article  MATH  Google Scholar 

  22. Deo S (2009) Stokes flow past a swarm of deformed porous spheroidal particles with Happel boundary condition. J Porous Media 12:347–359

    Article  Google Scholar 

  23. Dassios G, Hadjinicolaou M, Coutelieris FA, Payatakes AC (1995) Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions. Int J Eng Sci 33:1465–1490

    Article  MATH  Google Scholar 

  24. Deo S, Shukla P (2009) Creeping flow past a swarm of porous spherical particles with Mehta-Morse boundary condition. Indian J Biomech 7–8:123–127

    Google Scholar 

  25. Zholkovskiy EK, Shilov VN, Masliyah JH, Bondarenko MP (2007) Hydrodynamic cell model: general formulation and comparative analysis of different approaches. Can J Chem Eng 85:701–725

    Article  Google Scholar 

  26. Vasin SI, Filippov AN, Starov VM (2008) Hydrodynamic permeability of membranes built up by particles covered by porous shells: cell models. Adv Colloid Interface Sci 139:83–96

    Article  Google Scholar 

  27. Keh MP, Keh HJ (2010) Slow motion of an assemblage of porous spherical shells relative to a fluid. Transp Porous Media 81:261–275

    Article  MathSciNet  Google Scholar 

  28. Saad EI (2012) Stokes flow past an assemblage of axisymmetric porous spheroidal particle-in-cell models. J Porous Media 15:849–866

    Article  Google Scholar 

  29. Faltas MS, Saad EI (2012) Slow motion of a porous eccentric spherical particle-in-cell models. Transp Porous Media 95:133–150

    Article  MathSciNet  Google Scholar 

  30. Saad EI (2012) Cell models for micropolar flow past a viscous fluid sphere. Meccanica 47:2055–2068

    Article  MathSciNet  Google Scholar 

  31. Ochoa-Tapia JA, Whittaker S (1995) Momentum transfer at the boundary between a porous medium and a homogeneous fluid I: Theoretical development, II: Comparison with experiment. Int J Heat Mass Transf 38:2635–2655

    Article  MATH  Google Scholar 

  32. Beavers GS, Joseph DD (1967) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197–207

    Article  ADS  Google Scholar 

  33. Valdes-Parada FJ, Goyeau B, Ramirez JA, Ochoa-Tapia JA (2009) Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Transp Porous Media 78:439–457

    Article  Google Scholar 

  34. Bhattacharyya A (2010) Effect of momentum transfer condition at the interface of a model of creeping flow past a spherical permeable aggregate. Eur J Mech B, Fluids 29:285–294

    Article  MATH  Google Scholar 

  35. Prakash J, Raja Sekhar GP (2011) Overall bed permeability for flow through beds of permeable porous particles using the effective medium model-stress jump condition. Chem Eng Commun 198:85–101

    Article  Google Scholar 

  36. Prakash J, Raja Sekhar GP, Kohr M (2011) Stokes flow of an assemblage of porous particles: stress jump condition. Z Angew Math Phys 62:1027–1046

    Article  MathSciNet  MATH  Google Scholar 

  37. Srinivasacharya D, Prasad MK (2012) Creeping motion of a porous approximate sphere with an impermeable core in a spherical container. Eur J Mech B, Fluids 36:104–114

    Article  MathSciNet  Google Scholar 

  38. Raja Sekhar GP, Sano O (2003) Two-dimensional viscous flow in a granular material with a void of arbitrary shape. Phys Fluids 15:554–567

    Article  ADS  Google Scholar 

  39. Partha MK, Murthy PVSN, Raja Sekhar GP (2005) Viscous flow past a porous spherical shell-effect of stress-jump boundary condition. J Eng Mech 131:1291–1301

    Article  Google Scholar 

  40. Yadav PK, Tiwari A, Deo S, Filippov A, Vasin S (2010) Hydrodynamic permeability of membranes built up by spherical particles covered by porous shells: effect of stress jump condition. Acta Mech 215:193–209

    Article  MATH  Google Scholar 

  41. Ehrhardt M (May 2012) An introduction to fluid-porous interface coupling, Chap 1. In: Ehrhardt M (ed) Coupled fluid flow in energy, biology and environmental research. Progress in computational physics, vol 2. Bentham Science, http://www.math.uni-wuppertal.de

    Google Scholar 

  42. Koplik J, Levine H, Zee A (1983) Viscosity renormalization in the Brinkman equation. Phys Fluids 26:2864–2870

    Article  ADS  MATH  Google Scholar 

  43. Chen SB, Ye X (2000) Boundary effect on slow motion of a composite sphere perpendicular to two parallel impermeable plates. Chem Eng Sci 55:2441–2453

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Saad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saad, E.I. Stokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: effect of stress jump condition. Meccanica 48, 1747–1759 (2013). https://doi.org/10.1007/s11012-013-9706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9706-y

Keywords

Navigation