Skip to main content
Log in

Combustion process in a spark ignition engine: analysis of cyclic peak pressure and peak pressure angle oscillations

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper we analyze the cycle-to-cycle variations of peak pressure p max and peak pressure angle α pmax in a four-cylinder spark ignition engine. We examine the experimental time series of p max and α pmax for three different spark advance angles. Using standard statistical techniques such as return maps and histograms we show that depending on the spark advance angle, there are significant differences in the fluctuations of p max and α pmax . We also calculate the multiscale entropy of the various time series to estimate the effect of randomness in these fluctuations. Finally, we explain how the information on both p max and α pmax can be used to develop optimal strategies for controlling the combustion process and improving engine performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clerk D (1886) The gas engine. Longmans Green, London

    Google Scholar 

  2. Patterson DJ (1966) Cylinder pressure variations, a fundamental combustion problem. SAE paper No. 660129

  3. Hubbard M, Dobson PD, Powell JD (1976) Closed loop control of spark advance using a cylinder pressure sensor. J Dyn Syst Meas Control 414–420

  4. Matekunas FA (1986) Engine combustion control with ignition timing by pressure ratio management. US Pat A 4622939 Nov 18

  5. Sawamoto K, Kawamura Y, Kita T, Matsushita K (1987) Individual cylinder knock control by detecting cylinder pressure. SAE paper No 871911

  6. Wagner RM, Daw CS, Thomas JF (1993) Controlling chaos in spark-ignition engines. In: Proceedings of the central and eastern states joint technical meeting of the combustion institute, New Orleans, March 15–17

  7. Eriksson L, Nilsen L, Glavenius M (1997) Development of control algorithm stabilizing torque for optimal position of pressure peak. SAE Trans J Engines 106:1216–1223

    Google Scholar 

  8. Müller R, Hemberger H-H, Baier KH (2001) Engine control using neural networks: a new method in engine management systems. Meccanica 32:423–430

    Article  Google Scholar 

  9. Matsumoto K, Tsuda I, Hosoi Y (2007) Controlling engine system: a low-dimensional dynamics in a spark ignition engine of a motorcycle. Z Naturforsch 62a:587–595

    Google Scholar 

  10. Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill, New York

    Google Scholar 

  11. Hu Z (1996) Nonlinear instabilities of combustion processes and cycle-to-cycle variations in spark-ignition engines. SAE paper No 961197

  12. Wagner RM, Drallmeier JA, Daw CS (2001) Characterization of lean combustion instability in pre-mixed charge spark ignition engines. Int J Engine Res 1:301–320

    Article  Google Scholar 

  13. Daw CS, Finney CEA, Tracy ER (2003) A review of symbolic analysis of experimental time series. Rev Scen Instrum 74:915–930

    Article  ADS  Google Scholar 

  14. Wendeker M, Czarnigowski J, Litak G, Szabelski K (2003) Chaotic combustion in spark ignition engines. Chaos Solitons Fractals 18:803–806

    Article  MATH  Google Scholar 

  15. Kamiński T, Wendeker M, Urbanowicz K, Litak G (2004) Combustion process in a spark ignition engine: dynamics and noise level estimation. Chaos 14:461–466

    Article  ADS  Google Scholar 

  16. Winsor RE, Patterson DJ (1973) Mixture turbulence—a key to cyclic combustion variation. SAE paper No 730086

  17. Daily JW (1988) Cycle-to-cycle variations: a chaotic process? Combust Sci Technol 57:149–162

    Article  Google Scholar 

  18. Kantor JC (1984) A dynamical instability of spark-ignited engines. Science 224:1233–1235

    Article  ADS  MathSciNet  Google Scholar 

  19. Foakes AP, Pollard DG (1993) Investigation of a chaotic mechanism for cycle-to-cycle variations. Combust Sci Technol 90:281–287

    Article  Google Scholar 

  20. Chew L, Hoekstra R, Nayfeh JF, Navedo J (1994) Chaos analysis of in-cylinder pressure measurements. SAE paper No 942486

  21. Letellier C, Meunier-Guttin-Cluzel S, Gouesbet G, Neveu F, Duverger T, Cousyn B (1997) Use of the nonlinear dynamical system theory to study cycle-to-cycle variations from spark-ignition engine pressure data. SAE paper No 971640

  22. Daw CS, Finney CEA, Green JB Jr, Kennel MB, Thomas JF, Connolly FT (1996) A simple model for cyclic variations in a spark-ignition engine. SAE paper No 962086

  23. Daw CS, Kennel MB, Finney CEA, Connolly FT (1998) Observing and modelling dynamics in an internal combustion engine. Phys Rev E 57:2811–2819

    Google Scholar 

  24. Green JB Jr, Daw CS, Armfield JS, Finney CEA, Wagner RM, Drallmeier JA, Kennel MB, Durbetaki P (1999) Time irreversibility and comparison of cyclic-variability models. SAE paper No 1999-01-0221

  25. Wendeker M, Litak G, Czarnigowski J, Szabelski K (2004) Nonperiodic oscillations in a spark ignition engine. Int J Bifur Chaos 14:1801–1806

    Article  MATH  Google Scholar 

  26. Sen AK, Litak G, Taccani R, Radu R (2008) Wavelet analysis of cycle-to-cycle pressure variations in an internal combustion engine. Chaos Solitons Fractals 38:886–893

    Article  Google Scholar 

  27. Litak G, Kamiński T, Rusinek R, Czarnigowski J, Wendeker M (2008) Patterns in the combustion process in a spark ignition engine. Chaos Solitons Fractals 35:578–585

    Article  Google Scholar 

  28. Litak G, Kamiński T, Czarnigowski J, Żukowski D, Wendeker M (2007) Cycle-to-cycle oscillations of heat release in a spark ignition engine. Meccanica 42:423–433

    Article  Google Scholar 

  29. Sen AK, Longwic R, Litak G, Górski K (2008) Analysis of cycle-to-cycle pressure oscillations in a diesel engine. Mech Syst Signal Process 22:362–373

    Article  ADS  Google Scholar 

  30. Nielsen L, Eriksson L (1998) An ion-sense engine-fine-tuner. IEEE Control Syst Mag 18:43–52

    Article  Google Scholar 

  31. Kaminski T (2005) PhD thesis, Technical University of Lublin, Lublin

  32. Matekunas FA (1983) Modes and measures of cyclic combustion variability. SAE paper No 830337

  33. Ozdor N, Dulger M, Sher E (1994) Cyclic variability in spark ignition engines: a literature survey. SAE paper No 940987

  34. Radu R, Taccani R (2003) Experimental setup for the cyclic variability analysis on a spark ignition engine. SAE NA paper No 2003-01-19

  35. Litak G, Taccani R, Radu R, Urbanowicz K, Wendeker M, Hołyst JA, Giadrossi A (2005) Estimation of the noise level using coarse-grained entropy of experimental time series of internal pressure in a combustion engine. Chaos Solitons Fractals 23:1695–1701

    MATH  Google Scholar 

  36. Li G-X, Yao B-F (2008) Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine. Appl Therm Eng 28:611–620

    Article  Google Scholar 

  37. Litak G, Wendeker M, Krupa M, Czarnigowski J (2005) A numerical study of a simple stochastic/ deterministic model of cycle-to-cycle combustion fluctuations in spark ignition engines. J Vib Control 11:371–379

    Article  Google Scholar 

  38. Radons G, Neugebauer R (2004) Nonlinear dynamic effects of production systems. Wiley-VCH, Weinheim

    Book  Google Scholar 

  39. Litak G, Rusinek R, Teter A (2004) Nonlinear analysis of experimental time series of a straight turning process. Meccanica 39:105–112

    Article  MATH  Google Scholar 

  40. Piernikarski D, Hunicz J (2000) Investigation of misfire nature using optical combustion sensor in a SI automotive engine. SAE paper No 2000-02-0549

  41. Eriksson L (1999) Spark advance for optimal efficiency. SAE paper No 99-01-0548

  42. Grassberger P (1991) In: Atmanspacher H, Scheingraber H (eds) Information dynamics. Plenum, New York

    Google Scholar 

  43. Costa M, Goldberger AL, Peng C-K (2002) Multiscale analysis of complex biological signals. Phys Rev Lett 89:068102

    Article  ADS  Google Scholar 

  44. Costa M, Peng C-K, Goldberger AL (2003) Multiscale analysis of human gait dynamics. Physica A 330:53–60

    Article  MATH  ADS  Google Scholar 

  45. Costa M, Goldberger AL, Peng C-K (2005) Multiscale analysis of biological signals. Phys Rev E 89:021906

    Article  MathSciNet  Google Scholar 

  46. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol 278:H2039–H2049

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Litak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litak, G., Kamiński, T., Czarnigowski, J. et al. Combustion process in a spark ignition engine: analysis of cyclic peak pressure and peak pressure angle oscillations. Meccanica 44, 1–11 (2009). https://doi.org/10.1007/s11012-008-9148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-008-9148-0

Keywords

Navigation