Skip to main content
Log in

Thermal Residual Stresses in Graded Ceramic Composites: A Microscopic Computational Model Versus Homogenized Models

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Thermal residual stresses in ceramic composite laminates are analyzed through both a micromechanical computational model and two macroscopic homogenized models. The microscopic model is based on a purposely developed hybrid finite element able to account for the shape of the Alumina and Zirconia grains. Two different macroscopic models have been used as reference solutions for comparison: a standard displacement-based three-dimensional finite element model and an analytical model. Stress concentration factors, accounting for the microscopic material heterogeneities, have been estimated by means of the Eshelby tensor and applied to the average stress field obtained through the homogenized models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Green (1999) ArticleTitle‘Residual stresses in alumina–zirconia laminates’ J. Eur. Ceram. Soc. 19 2511–2517

    Google Scholar 

  2. V. Sergo M. Lipkin G. Portu ParticleDe D.R. Clarke (1997) ArticleTitle‘Edge stresses in alumina/zirconia laminates’ J. Am. Ceram. Soc. 80 1633–1638

    Google Scholar 

  3. S. Ho C. Hillman F.F. Lange Z. Suo (1995) ArticleTitle‘Surface cracking in layers under biaxial, residual compressive stress’ J. Am. Ceram. Soc. 78 2353–2359

    Google Scholar 

  4. M. Savoia J.N. Reddy (1995) ArticleTitle‘Three-dimensional thermal analysis of laminated composite plates’ Int. J. Solids Struct. 32 593–608

    Google Scholar 

  5. Rufeng, L. and Xie, Z., ‘New finite element method for interlaminar stress analysis of composite laminates at free edge’, Comput. Mech. (1991) 1025–1030.

  6. P. Gaudenzi A. Mannini R. Carbonaro (1998) ArticleTitle‘Multi-layer higher-order finite elements for the analysis of free-edge stresses in composite laminates’ Int. J. Numer. Meth. Eng. 41 851–873

    Google Scholar 

  7. G.J. Dvorak J. Zhang (2001) ArticleTitle‘Transformation field analyses of damage evolution in composite materials’ J. Mech. Phys. Solids 49 2517–2541

    Google Scholar 

  8. K. Matous (2003) ArticleTitle‘Damage evolution in particulate composite materials’ Int. J. Solids Struct. 40 1489–1503

    Google Scholar 

  9. C.H. Hsueh P.F. Becher (1996) ArticleTitle‘Residual thermal stresses in ceramic composites Part I: with ellipsoidal inclusions’. Mat. Sci. Eng. A – Struct.T A212 22–28

    Google Scholar 

  10. S.B. Biner (2001) ArticleTitle‘Thermo-elastic analisys of functionally graded materials using Voronoi elements’ Mat. Sci. Eng. A-Struct.T A315 136–146

    Google Scholar 

  11. S. Schmauder U. Weber (2001) ArticleTitle‘Modelling of functionally graded materials by numerical homogenization’ Arch. Appl. Mech. 71 182–192

    Google Scholar 

  12. K. Terada M. Hori T. Kyoya N. Kikuchi (2000) ArticleTitle‘Simulation of the multi-scale convergence in computational homogenization approaches’ Int. J. Solids Struct. 37 2285–2311

    Google Scholar 

  13. S. Ghosh K. Lee S. Moorthy (1995) ArticleTitle‘Multiple scale analisys of hetherogeneous elastic structures using homogenization theory and Vornoi cell finite element method’ Int. J. Solids Struct. 32 27–62

    Google Scholar 

  14. S. Ghosh S. Moorthy (1995) ArticleTitle‘Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method’ Comput. Meth. Appl. Mech. Eng. 121 373–409

    Google Scholar 

  15. S. Moorthy S. Ghosh (2000) ArticleTitle‘Adaptivity and convergence in the Voronoi cell element model for analyzing heterogeneous materials’ Comput. Meth. Appl. Mech. Eng. 185 37–74

    Google Scholar 

  16. W. Becker P.P. Jin J. Lindemann (2001) ArticleTitle‘The free corner effect in thermally loaded laminates’ Compos. Struct. 52 97–102

    Google Scholar 

  17. T.L. Becker SuffixJr. R.L. Cannon R.O. Ritchie (2000) ArticleTitle‘An Approximate Method for Residual Stress Calculation in Functionally Graded Materials’ Mech. Mater. 22 85–97

    Google Scholar 

  18. Vena, P., Gastaldi D. and Contro R., ‘Mechanical properties of graded ceramic composites for biomedical applications, a computational approach’ (in Italian). Proc. of XVII Italian Congress of Theoretical and Applied Mechanics (AIMETA),CD-rom,(2003).

  19. T. Chartier T. Rouxel (1997) ArticleTitle‘Tape-cast alumina-zirconia laminates: processing and mechanical properties’ J. Eur. Ceram. Soc. 17 299–308

    Google Scholar 

  20. Z. Hashin S. Shtrikman (1963) ArticleTitle‘A variational approach to the theory of the elastic behaviour of multiphase materials’ J. Mech. Phys. 11 127–140

    Google Scholar 

  21. P. Tong T.H.H. Pian (1969) ArticleTitle‘A variational principle and the convergence of a finite element method based on assumed stress distribution’ Int. J. Solids Struct. 5 73–83

    Google Scholar 

  22. S. Ghosh S.N. Mukhopadhyay (1993) ArticleTitle‘A Material based finite element analysis of heterogeneous media involving dirichlet tessellations’ Comput. Meth. Appl. Mech. Eng. 104 211–247

    Google Scholar 

  23. M. Grujicic Y. Zhang (1998) ArticleTitle‘Determination of effective elastic propeties of functionally graded materials using Voronoi cell finite element method’ Mat. Sci. Eng. A – Struct.T A251 64–76

    Google Scholar 

  24. A. Krell A. Teresiak D. Schlafer (1996) ArticleTitle‘Grain size dependent residual microstress in submicron Al2O3 and ZrO2J. Eur. Ceram. Soc. 16 803–811

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vena, P. Thermal Residual Stresses in Graded Ceramic Composites: A Microscopic Computational Model Versus Homogenized Models. Meccanica 40, 163–179 (2005). https://doi.org/10.1007/s11012-005-3064-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-005-3064-3

Keywords

Navigation