Skip to main content

Advertisement

Log in

Identification of the CCL2 PI3K/Akt axis involved in autophagy and apoptosis after spinal cord injury

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a devastating neurological disease with no cure that usually results in irreversible loss of sensory and voluntary motor functions below the injury site. We conducted an in-depth bioinformatics analysis combining the gene expression omnibus spinal cord injury database and the autophagy database and found that the expression of the autophagy gene CCL2 was significantly upregulated and the PI3K/Akt/mTOR signaling pathway was activated after SCI. The results of the bioinformatics analysis were verified by constructing animal and cellular models of SCI. We then used small interfering RNA to inhibit the expression of CCL2 and PI3K to inhibit and activate the PI3K/Akt/mTOR signaling pathway; western blot, immunofluorescence, monodansylcadaverine, and cell flow techniques were used to detect the expression of key proteins involved in downstream autophagy and apoptosis. We found that when PI3K inhibitors were activated, apoptosis decreased, the levels of autophagy-positive proteins LC3-I/LC3-II and Bcl-1 increased, the levels of autophagy-negative protein P62 decreased, the levels of pro-apoptotic proteins Bax and caspase-3 decreased, the levels of the apoptosis-inhibiting protein Bcl-2 increased. In contrast, when a PI3K activator was used, autophagy was inhibited, and apoptosis was increased. This study revealed the effect of CCL2 on autophagy and apoptosis after SCI through the PI3K/Akt/mTOR signaling pathway. By blocking the expression of the autophagy-related gene CCL2, the autophagic protective response can be activated, and apoptosis can be inhibited, which may be a promising strategy for the treatment of SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data is real and guarantee the validity of results.

References

  • Abbaszadeh F, Fakhri S, Khan H (2020) Targeting apoptosis and autophagy following spinal cord injury: therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 160:105069

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord Injury: an overview of pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 10::282

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen A (1991) Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal columm. JAMA 57

  • Badhiwala JH, Ahuja CS, Fehlings MG (2018) Time is spine: a review of translational advances in spinal cord injury. J Neurosurg Spine 30:1–18

    Article  PubMed  Google Scholar 

  • Brown H, Chung M, Uffing A, Batistatou N, Tsang T, Doskocil S, Mao W, Willbold D, Bast RC Jr, Lu Z, Weiergraber OH, Kritzer JA (2022) Structure-based design of stapled peptides that bind GABARAP and inhibit autophagy. J Am Chem Soc 144:14687–14697

    Article  CAS  PubMed  Google Scholar 

  • Chamankhah M, Eftekharpour E, Karimi-Abdolrezaee S, Boutros PC, San-Marina S, Fehlings MG (2013) Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model. BMC Genomics 14:583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Chen Q, Mao Y, Xu S, Xia C, Shi X, Zhang JH, Yuan H, Sun X (2010) Hydrogen-rich saline protects against spinal cord injury in rats. Neurochem Res 35:1111–1118

    Article  CAS  PubMed  Google Scholar 

  • Chittaranjan S, Bortnik S, Dragowska WH, Xu J, Abeysundara N, Leung A, Go NE, DeVorkin L, Weppler SA, Gelmon K, Yapp DT, Bally MB, Gorski SM (2014) Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer. Clin Cancer Res 20:3159–3173

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Zhu L, Cai H, Wang G, Liu B (2018) Autophagic compound database: a resource connecting autophagy-modulating compounds, their potential targets and relevant diseases. Cell Prolif 51:e12403

    Article  PubMed  Google Scholar 

  • Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI (2003) Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 53:454–468

    Article  PubMed  Google Scholar 

  • Donnelly DJ, Longbrake EE, Shawler TM, Kigerl KA, Lai W, Tovar CA, Ransohoff RM, Popovich PG (2011) Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS + macrophages. J Neurosci 31:9910–9922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan B, Wei Z, Yao X, Shi G, Cheng X, Zhou X, Zhou H, Ning G, Kong X, Feng S (2018) Microenvironment Imbalance of spinal cord Injury. Cell Transpl 27:853–866

    Article  Google Scholar 

  • Fang WB, Yao M, Jokar I, Alhakamy N, Berkland C, Chen J, Brantley-Sieders D, Cheng N (2015) The CCL2 chemokine is a negative regulator of autophagy and necrosis in luminal B breast cancer cells. Breast Cancer Res Treat 150:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang S, Zhong L, Wang AQ, Zhang H, Yin ZS (2021) Identification of regeneration and hub genes and pathways at different time points after spinal cord Injury. Mol Neurobiol 58:2643–2662

    Article  CAS  PubMed  Google Scholar 

  • Figueroa JD, Serrano-Illan M, Licero J, Cordero K, Miranda JD, De Leon M (2016) Fatty acid binding protein 5 modulates Docosahexaenoic Acid-Induced recovery in rats undergoing spinal cord Injury. J Neurotrauma 33:1436–1449

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraiberg M, Elazar Z (2020) Genetic defects of autophagy linked to disease. Prog Mol Biol Transl Sci 172:293–323

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Bravo-San Pedro JM, Blomgren K, Kroemer G (2016) Autophagy in acute brain injury. Nat Rev Neurosci 17:467–484

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Duan Y, Chang F, Zhang T, Huang X, Yu C (2022) METTL14 promotes apoptosis of spinal cord neurons by inducing EEF1A2 m6A methylation in spinal cord injury. Cell Death Discov 8:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handa K, Kanno H, Matsuda M, Sugaya T, Murakami T, Prudnikova M, Ozawa H, Itoi E (2020) Chaperone-mediated autophagy after spinal cord Injury. J Neurotrauma 37:1687–1695

    Article  PubMed  Google Scholar 

  • Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7

    Article  PubMed  PubMed Central  Google Scholar 

  • He M, Ding Y, Chu C, Tang J, Xiao Q, Luo ZG (2016) Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proc Natl Acad Sci U S A 113:11324–11329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26:2694–2701

    Article  CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo j 19:5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanno H, Ozawa H, Sekiguchi A, Itoi E (2009) Spinal cord injury induces upregulation of beclin 1 and promotes autophagic cell death. Neurobiol Dis 33:143–148

    Article  CAS  PubMed  Google Scholar 

  • Lee YL, Shih K, Bao P, Ghirnikar RS, Eng LF (2000) Cytokine chemokine expression in contused rat spinal cord. Neurochem Int 36:417–425

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Kroemer G (2019) Biological Functions of Autophagy genes: a Disease Perspective. Cell 176:11–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XG, Du JH, Lu Y, Lin XJ (2019a) Neuroprotective effects of rapamycin on spinal cord injury in rats by increasing autophagy and akt signaling. Neural Regen Res 14:721–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Chen T, Cao Y, Jiang X, Lin H, Zhang J, Chen Z (2019b) Pros and cons: Autophagy in Acute spinal cord Injury. Neurosci Bull 35:941–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Li B, Tao B, Zhao C, Fan B, Wang Q, Sun C, Duan H, Pang Y, Fu X, Feng S (2021) Identification of four genes and biological characteristics associated with acute spinal cord injury in rats integrated bioinformatics analysis. Ann Transl Med 9:570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Sarkar C, Dinizo M, Faden AI, Koh EY, Lipinski MM, Wu J (2015) Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis 6:e1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald JW, Sadowsky C (2002) Spinal-cord injury. The Lancet 359:417–425

    Article  Google Scholar 

  • Mizushima N, Levine B (2020) Autophagy in Human Diseases. N Engl J Med 383:1564–1576

    Article  CAS  PubMed  Google Scholar 

  • Nikoletopoulou V, Papandreou ME, Tavernarakis N (2015) Autophagy in the physiology and pathology of the central nervous system. Cell Death Differ 22:398–407

    Article  CAS  PubMed  Google Scholar 

  • Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 71:281–99

  • Ravanan P, Srikumar IF, Talwar P (2017) Autophagy: the spotlight for cellular stress responses. Life Sci 188:53–67

    Article  CAS  PubMed  Google Scholar 

  • Roca H, Varsos ZS, Mizutani K, Pienta KJ (2008) CCL2, survivin and autophagy: new links with implications in human cancer. Autophagy 4:969–971

    Article  CAS  PubMed  Google Scholar 

  • Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ (2009) CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284:34342–34354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraswat Ohri S, Bankston AN, Mullins SA, Liu Y, Andres KR, Beare JE, Howard RM, Burke DA, Riegler AS, Smith AE, Hetman M, Whittemore SR (2018) Blocking autophagy in oligodendrocytes limits functional recovery after spinal cord Injury. J Neurosci 38:5900–5912

    Article  PubMed  PubMed Central  Google Scholar 

  • Stavoe AKH, Holzbaur ELF (2019) Autophagy in neurons. Annu Rev Cell Dev Biol 35:477–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang P, Hou H, Zhang L, Lan X, Mao Z, Liu D, He C, Du H, Zhang L (2014) Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol Neurobiol 49:276–287

    Article  CAS  PubMed  Google Scholar 

  • van Beek N, Klionsky DJ, Reggiori F (2018) Genetic aberrations in macroautophagy genes leading to diseases. Biochim Biophys Acta Mol Cell Res 1865:803–816

    Article  PubMed  Google Scholar 

  • Wang YC, Zhang S, Du TY, Wang B, Sun XQ (2010) Hyperbaric oxygen preconditioning reduces ischemia-reperfusion injury by stimulating autophagy in neurocyte. Brain Res 1323:149–151

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wu GS (2014) Role of autophagy in cisplatin resistance in ovarian cancer cells. J Biol Chem 289:17163–17173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Zhou L, Zheng X, Chen G, Pan R, Li J, Liu W (2017) Autophagy protects against PI3K/Akt/mTOR-mediated apoptosis of spinal cord neurons after mechanical injury. Neurosci Lett 656:158–164

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang Q, Lou Y, Xu J, Feng Z, Chen Y, Tang Q, Zheng G, Zhang Z, Wu Y, Tian N, Zhou Y, Xu H, Zhang X (2018) Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. J Cell Mol Med 22:1148–1166

    CAS  PubMed  Google Scholar 

  • Wang Z, Zheng S, Gu Y, Zhou L, Lin B, Liu W (2020) 4-PBA enhances autophagy by inhibiting endoplasmic reticulum stress in recombinant human Beta nerve growth Factor-Induced PC12 cells after mechanical Injury via PI3K/AKT/mTOR signaling pathway. World Neurosurg 138:e659–e664

    Article  PubMed  Google Scholar 

  • Wiatrak B, Kubis-Kubiak A, Piwowar A, Barg E (2020) PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells 9

  • Xu W, Wei Q, Han M, Zhou B, Wang H, Zhang J, Wang Q, Sun J, Feng L, Wang S, Ye Y, Wang X, Zhou J, Jin H (2018) CCL2-SQSTM1 positive feedback loop suppresses autophagy to promote chemoresistance in gastric cancer. Int J Biol Sci 14:1054–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Zhang F, Chang MM, Zhong C, Sun CH, Zhu HR, Yao JC, Li ZZ, Li ST, Zhang WC, Sun GD (2021) Recruitment of gammadelta T cells to the lesion via the CCL2/CCR2 signaling after spinal cord injury. J Neuroinflammation 18:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Li M, Ni B, Kong J, Zhang Z (2013) Induction of neuronal mitophagy in acute spinal cord injury in rats. Neurotox Res 24:512–522

    Article  PubMed  Google Scholar 

  • Zhang HY, Wang ZG, Wu FZ, Kong XX, Yang J, Lin BB, Zhu SP, Lin L, Gan CS, Fu XB, Li XK, Xu HZ, Xiao J (2013) Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury. Mol Neurobiol 48:452–464

    Article  PubMed  Google Scholar 

  • Zhang LH, Yang AJ, Wang M, Liu W, Wang CY, Xie XF, Chen X, Dong JF, Li M (2016) Enhanced autophagy reveals vulnerability of P-gp mediated epirubicin resistance in triple negative breast cancer cells. Apoptosis 21:473–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhu C, Li X, Shi Y, Zhang Z (2021) CCR2 downregulation attenuates spinal cord injury by suppressing inflammatory monocytes. Synapse 75:e22191

    Article  CAS  PubMed  Google Scholar 

  • Zhao YG, Zhang H (2019) Core autophagy genes and human diseases. Curr Opin Cell Biol 61:117–125

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Chen H, Xu H, Jia X (2021) Trehalose Augments Neuron Survival and Improves Recovery from Spinal Cord Injury via mTOR-Independent Activation of Autophagy. Oxid Med Cell Longev 2021:8898996

  • Zhou KL, Zhou YF, Wu K, Tian NF, Wu YS, Wang YL, Chen DH, Zhou B, Wang XY, Xu HZ, Zhang XL (2015) Stimulation of autophagy promotes functional recovery in diabetic rats with spinal cord injury. Sci Rep 5:17130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China, No. 81871785.

And Hefei Second People’s Hospital Doctoral Special Fund Project Grant No. 2022bszx08.

Author information

Authors and Affiliations

Authors

Contributions

Sheng Fang: Conceived the original idea and designed the outlines of the study. Hao Tang: Helped do some experiments, Ming-zhi Li, Jian-Jun Chu Helped collect, organize the data. Zong-Sheng Yin, Qi-yu Jia: Aided in revising the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Zong-Sheng Yin or Qi-Yu Jia.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest with the Gene Expression Omnibus (GEO) database used in this study.

Ethics approval

This study was approved by the Ethics Committee of Anhui Medical University (20180402).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Tang, H., Li, MZ. et al. Identification of the CCL2 PI3K/Akt axis involved in autophagy and apoptosis after spinal cord injury. Metab Brain Dis 38, 1335–1349 (2023). https://doi.org/10.1007/s11011-023-01181-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-023-01181-y

Keywords

Navigation