Skip to main content
Log in

Effects of oxcarbazepine on monoamines content in hippocampus and head and body shakes and sleep patterns in kainic acid-treated rats

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

The aim of this work was to analyze the effect of oxcarbazepine (OXC) on sleep patterns, “head and body shakes” and monoamine neurotransmitters level in a model of kainic-induced seizures. Adult Wistar rats were administered kainic acid (KA), OXC or OXC + KA. A polysomnographic study showed that KA induced animals to stay awake for the whole initial 10 h. OXC administration 30 min prior to KA diminished the effect of KA on the sleep parameters. As a measure of the effects of the drug treatments on behavior, head and body shakes were visually recorded for 4 h after administration of KA, OXC + KA or saline. The presence of OXC diminished the shakes frequency. 4 h after drug application, the hippocampus was dissected out, and the content of monoamines was analyzed. The presence of OXC still more increased serotonin, 5-hidroxyindole acetic acid, dopamine, and homovanilic acid, induced by KA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike K, Tanaka S, Tojo H, Fukumoto S, Imamura S, Takigawa M (2001) Kainic acid-induced dorsal and ventral hippocampal seizures in rats. Brain Res 900:65–71

    Article  PubMed  CAS  Google Scholar 

  • Alfaro-Rodríguez A, González-Piña R (2005) Ozone-induced paradoxical sleep decrease is related to diminished acetylcholine levels in the medial preoptic area in rats. Chem Biol Interact 151:151–158

    Article  PubMed  Google Scholar 

  • Alfaro-Rodríguez A, Labra-Ruiz N, Carrasco-Portugal M, Gonzalez-Maciel A, Perez-Guille B, Soriano-Rosales R, Villegas F, González-Piña R, Espinoza-Villanueva G, Ayala-Guerrero F (2002) Effect of Carbamazepine on sleep patterns disturbed by epilepsy. Proc West Pharmacol Soc 45:62–64

    PubMed  Google Scholar 

  • Alfaro-Rodríguez A, González-Piña R, Arch-Tirado E, Carrasco-Portugal M, Pérez-Guillé B, Soriano-Rosales RE, Padilla-Martin K, Uribe-Escamilla R, Labra-Ruiz N (2009) Neuro-protective effects of carbamazepine on sleep patterns and head and body shakes in kainic acid-treated rats. Chem Biol Interact 180:376–382

    Article  PubMed  Google Scholar 

  • Altagracia M, Kravzov J, Santamaría A, Ríos C, Ordaz H, Gonzalez L (1994) Dapsone administration prevents quinolinate-induced neurotoxicity in rats. Proc West Pharmacol Soc 37:63

    PubMed  CAS  Google Scholar 

  • Ayala-Guerrero F, Vargas L, Romero RM, Reynoso-Robles R, González-Maciel A (2001) Effect of oxcabazepine on kainic acid-induced seizure. Proc West Pharamcol Soc 44:173–175

    CAS  Google Scholar 

  • Ayala-Guerrero F, Alfaro-Rodríguez A, Martínez C, Campos-Sepúlveda E, Vargas L, Mexicano G (2002) Effect of kainic acid-induced seizures on sleep patterns. Proc West Pharmacol Soc 45:178–180

    PubMed  CAS  Google Scholar 

  • Beck SG (1992) 5-Hydroxytryptamine increases excitability of CA1 hippocampal pyramidal cells. Synapse 10:334–340

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Tremblay E, Riche D, Ghilini G, Naquel R (1981) Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6:1361–1391

    Article  PubMed  CAS  Google Scholar 

  • Bozzi Y, Vallone D, Borrelli E (2000) Neuroprotective role of dopamine against hippocampal cell death. J Neurosci 20:8643–8649

    PubMed  CAS  Google Scholar 

  • Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y (2004) Anticonvulsant action of hippocampal dopamine and serotonin is independently mediated by D and 5-HT receptors. J Neurochem 89:834–843

    Article  PubMed  CAS  Google Scholar 

  • Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y (2005a) Hippocampal dopamine and serotonin elevations as pharmacodynamic markers for the anticonvulsant efficacy of oxcarbazepine and 10,11-dihydro-10-hydroxycarbamazepine. Neurosci Lett 390:48–53

    Article  PubMed  CAS  Google Scholar 

  • Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y (2005b) Quantitative in vivo microdialysis study on the influence of multidrug transporters on the blood-brain barrier passage of oxcarbazepine: concomitant use of hippocampal monoamines as pharmacodynamic markers for the anticonvulsant activity. J Pharmacol Exp Ther 314:725–731

    Article  PubMed  CAS  Google Scholar 

  • Dorostkar MM, Boehm S (2007) Opposite effects of presynaptic 5-HT3 receptor activation on spontaneous and action potential-evoked GABA release at hippocampal synapses. J Neurochem 100:395–405

    Article  PubMed  CAS  Google Scholar 

  • Frank MG, Page J, Helle HC (1997) The effects of REM sleep-inhibiting drugs in neonatal rats: evidence for a distinction between neonatal active sleep and REM sleep. Brain Res 778:64–72

    Article  PubMed  CAS  Google Scholar 

  • Freitas RM, Vasconcelos SM, Souza FC, Viana GS, Fonteles MM (2004) Monoamine levels after pilocarpine-induced status epilepticus in hippocampus and frontal cortex of Wistar rats. Neurosci Lett 370:196–200

    Article  PubMed  CAS  Google Scholar 

  • Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of (3H)norepinephrine, (3H)dopamine and (3H)dopa in various regions of the brain. J Neurochem 13:655–669

    Article  PubMed  CAS  Google Scholar 

  • Hammad H, Wagner JJ (2006) Dopamine-mediated disinhibition in the CA1 region of rat hippocampus via D3 receptor activation. J Pharmacol Exp Ther 316:113–120

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN, Myers AJ, Gurevich E (1998) Dopamine D2 receptor bands in normal human temporal cortex are absent in Alzheimer’s disease. Brain Res 784:7–17

    Article  PubMed  CAS  Google Scholar 

  • Kalia M (2006) Neurolobiology of sleep. Metabolism 55:S2–S6

    Article  PubMed  CAS  Google Scholar 

  • Kalis MM, Huff NA (2001) Oxcarbazepine, an antiepileptic agent. Clin Ther 23:680–700

    Article  PubMed  CAS  Google Scholar 

  • Khazipov R, Holmes GL (2003) Synchronization of kainate-induced epileptic activity via GABAergic inhibition in the superfused rat hippocampus in vivo. J Neurosci 23:5337–5341

    PubMed  CAS  Google Scholar 

  • Kovacs N, Nagy F, Balas I, Komoly S, Janszky J (2008) Oxcarbazepine may induce psychotic symptoms in Parkinson’s disease. Epilepsy Behav 12:492–493

    PubMed  Google Scholar 

  • Landmark CJ (2007) Targets for antiepileptic drugs in the synapse. Med Sci Monit 13:RA1–7

    PubMed  CAS  Google Scholar 

  • Macedo DS, Vasconcelos SM, Belchior LD, Santos RS, Viana GS, Sousa FC (2004) Alterations in monoamine levels after cocaine-induced status epilepticus and death in striatum and prefrontal cortex of mice. Neurosci Lett 362:185–188

    Article  PubMed  CAS  Google Scholar 

  • Malow BA, Lin X, Kushwaha R, Aldrich MS (1998) Interictal spiking increases with sleep depth in temporal lobe epilepsy. Epilepsia 39:1309–1316

    Article  PubMed  CAS  Google Scholar 

  • Mauler F, Fahrig T, Horváth E, Jork R (2001) Inhibition of evoked glutamate release by the neuroprotective 5-HT (1 A) receptor agonist BAY x 3702 in vitro and in vivo. Brain Res 888:150–157

    Article  PubMed  CAS  Google Scholar 

  • McLean MJ, Schmutz M, Wamil AW, Olpe HR, Portet C, Feldmann KF (1994) Oxcarbazepine: Mechanism of action. Epilepsia 35:S5–9

    Article  PubMed  Google Scholar 

  • Naudon L, Leroux-Nicollet I, Boulay D, Costentin J (2001) Decreased densities of dopamine and serotonin transporters and of vesicular monoamine transporter 2 in severely kainic acid lesioned subregions of the striatum. J Neural Transm 108:431–444

    Article  PubMed  CAS  Google Scholar 

  • Olfert ED, Cross BM, McWilliam AA (1993) Guide for the care and use of experimental animals. Can Council Anim Care 1–211

  • Osorio-Rico L, Mancera-Flores M, Ríos C (2003) Changes in brain serotonin turnover, body and head shakes in kainic acid-treated rats. Pharmacol Toxicol 92:143–147

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Guillé B, M del Carrasco-Portugal C, Alfaro-Rodríguez A, Labra-Ruiz N, Soriano-Rosales R, Flores-Murrieta FJ, Ayala-Guerrero F (2007) Kainic acid does not modify the oral pharmacokinetics of carbamazepine in rats. Proc West Pharmacol Soc 50:67–8

    PubMed  Google Scholar 

  • Prince DA (1978) Neurophysiology of epilepsy. Annu Rev Neurosci 1:395–415

    Article  PubMed  CAS  Google Scholar 

  • Schmitz D, Empson RM, Heinemann U (1995) Serotonin reduces inhibition via 5-HT1A receptors in area CA1 of rat hippocampal slices in vitro. J Neurosci 15:7217–7225

    PubMed  CAS  Google Scholar 

  • Schmitz D, Gloveli T, Empson RM, Heinemann U (1998) Comparison of the effects of serotonin in the hippocampus and the entorhinal cortex. Mol Neurobiol 17:59–72

    Article  PubMed  CAS  Google Scholar 

  • Shouse MN, Staba RJ, Saquib SF, Farber PR (2001) Long-lasting effects of feline amygdala kindling on monoamines, seizures and sleep. Brain Res 892:147–165

    Article  PubMed  CAS  Google Scholar 

  • Sitges M, Guarneros A, Nekrassov V (2007) Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrogine, topiramate and vinpocetine on the presynaptic Ca2 + channel-mediated release of (3H) glutamate: Comparison with the Na + channel-mediated release. Neuropharmacology 53:854–862

    Article  PubMed  CAS  Google Scholar 

  • Smolders I, Clinckers R, Meurs A, De Bundel D, Portelli J, Ebinger G, Michotte Y (2008) Direct enhancement of hippocampal dopamine or serotonin levels as a pharmacodynamic measure of combined antidepressant-anticonvulsant action. Neuropharmacology 54:1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Sperk G (1994) Kainic acid seizures in the rat. Prog Neurobiol 42:1–32

    Article  PubMed  CAS  Google Scholar 

  • Stefani A, Pisani A, De Murtas M, Mercuri NB, Marciani MG, Calabresi P (1995) Action of GP 47779, the active metabolite of oxcarbazepine, on the corticostriatal system. II. Modulation of high-voltage-activated calcium currents. Epilepsia 36:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Stepanović-Petrović RM, Tomić MA, Vučković SM, Poznanović G, Ugrešić ND, Prostran MŠ, Bošković B (2011) Pharmacological interaction between oxcarbazepine and two COX inhibitors in a rat model of inflammatory hyperalgesia. Pharmacol Biochem Behav 97(3):611–8

    Article  PubMed  Google Scholar 

  • Stringer JL, Lothman EW (1992) Reverberatory seizure discharges in hippocampalparahippocampal circuits. Exp Neurol 116:198–203

    Article  PubMed  CAS  Google Scholar 

  • Tidwell A, Swims M (2003) Review of the newer antiepileptic drugs. Am J Manag Care 9:253–276

    PubMed  Google Scholar 

  • Wellington K, Goa KL (2001) Oxcarbazepine: an update of its efficacy in the management of epilepsy. CNS Drugs 15:137–163

    Article  PubMed  CAS  Google Scholar 

  • Wójtowicz AM, van den Boom L, Chakrabarty A, Maggio N, Haq RU, Behrens CJ, Heinemann U (2009) Monoamines block kainate- and carbachol-induced gamma-oscillations but augment stimulus-induced gamma-oscillations in rat hippocampus in vitro. Hippocampus 19:273–288

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Alfaro-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfaro-Rodríguez, A., González-Piña, R., Bueno-Nava, A. et al. Effects of oxcarbazepine on monoamines content in hippocampus and head and body shakes and sleep patterns in kainic acid-treated rats. Metab Brain Dis 26, 213–220 (2011). https://doi.org/10.1007/s11011-011-9254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-011-9254-x

Keywords

Navigation