Skip to main content

Advertisement

Log in

Bone morphogenetic protein-2 and pulsed electrical stimulation synergistically promoted osteogenic differentiation on MC-3T3-E1 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Electrical stimulation (ES) plays an important role in regulating cell osteoblast differentiation. As a noninvasive rehabilitation therapy method, Es has a unique role in postoperative recovery. Bone morphogenetic protein-2 (BMP-2) is the most commonly used bioactive molecule in in situ tissue engineering scaffolds, and it plays an important regulatory role in the whole process of bone injury repair. In this study, the osteogenic regulation of MC-3T3-E1 cells was studied by combining pulsed electrical stimulation (PES) and different concentrations of BMP-2. The results showed that PES and BMP-2 could synergically promote the proliferation of MC-3T3-E1 cells. The qPCR results of osteoblast-related genes showed that PES was synergistic with BMP-2 to promote osteoblast differentiation mainly through the regulation of the Smad/BMP and insulin like growth factor 1 (IGF1) signaling pathways. The expression level of alkaline phosphatase (ALP) and alizarin red staining further demonstrated the synergistic effect of PES and BMP-2 on promoting osteogenic differentiation and mineralization of cells. PES and BMP-2 could also synergically promote cell proliferation, expression of collagen I (COL-I) and ALP, and cell mineralization on the 3D-printed polylactic acid scaffold. These results suggest that the use of PES can enhance the osteogenic effect of in situ bone repair scaffolds containing BMP-2, reduce the dose of BMP-2 alone, and reduce the possible side effects of high-dose BMP-2 in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data generated or analysed during this study were included in this article.

References

  1. Chen S, Chen X, Geng Z, Su J (2022) The horizon of bone organoid: A perspective on construction and application. Bioact Mater 18:15–25. https://doi.org/10.1016/j.bioactmat.2022.01.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robinson PG, Abrams GD, Sherman SL, Safran MR, Murray IR (2020) Autologous bone grafting. Op Tech Sports Med 28(4):150780. https://doi.org/10.1016/j.otsm.2020.150780

    Article  Google Scholar 

  3. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926. https://doi.org/10.1126/science.8493529

    Article  CAS  PubMed  Google Scholar 

  4. Coronado RA, Brintz CE, McKernan LC, Master H, Motzny N, Silva FM et al (2020) Psychologically informed physical therapy for musculoskeletal pain: current approaches, implications, and future directions from recent randomized trials. Pain Rep 5(5):e847–e847. https://doi.org/10.1097/pr9.0000000000000847

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hao Z, Xu Z, Wang X, Wang Y, Li H, Chen T et al (2021) Biophysical stimuli as the fourth pillar of bone tissue engineering. Front Cell Dev Biol 9:790050. https://doi.org/10.3389/fcell.2021.790050

    Article  PubMed  PubMed Central  Google Scholar 

  6. Elsner B, Kugler J, Pohl M, Mehrholz J (2021) Transcranial direct current stimulation for activities after stroke what is the updated evidence? Stroke 52(7):E358–E359. https://doi.org/10.1161/strokeaha.120.033757

    Article  Google Scholar 

  7. Cerqueira TC, Cerqueira ML, Carvalho AJ, Oliveira GU, Araújo AA, Carvalho VO, Cacau LD, Silva WM, Mendonça JT, Santana VJ (2019) Neuromuscular electrical stimulation on hemodynamic and respiratory response in patients submitted to cardiac surgery: pilot randomized clinical trial. Int J Cardiovasc Sci 32:483–489. https://doi.org/10.5935/2359-4802.20190028

    Article  Google Scholar 

  8. Pettersen E, Anderson J, Ortiz-Catalan M (2022) Electrical stimulation to promote osseointegration of bone anchoring implants: a topical review. J Neuroeng Rehabil 19(1):31. https://doi.org/10.1186/s12984-022-01005-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bouteraa Y, Ben Abdallah I, Elmogy A (2020) Design and control of an exoskeleton robot with EMG-driven electrical stimulation for upper limb rehabilitation. Ind Robot Int J Robot Res Appl 47(4):489–501. https://doi.org/10.1108/ir-02-2020-0041

    Article  Google Scholar 

  10. deVet T, Jhirad A, Pravato L, Wohl GR (2021) Bone bioelectricity and bone-cell response to electrical stimulation: a review. Crit Rev Biomed Eng 49(1):1–19. https://doi.org/10.1615/CritRevBiomedEng.2021035327

    Article  PubMed  Google Scholar 

  11. Wang Y, Cui H, Wu Z, Wu N, Wang Z, Chen X et al (2016) Modulation of osteogenesis in MC3T3-E1 Cells by different frequency electrical stimulation. PLoS ONE 11(5):e0154924. https://doi.org/10.1371/journal.pone.0154924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brighton CT, Pollack SR (1985) Treatment of recalcitrant non-union with a capacitively coupled electrical-field - a preliminary-report. J Bone Joint Surg-Am Vol 67A(4):577–585. https://doi.org/10.2106/00004623-198567040-00012

    Article  Google Scholar 

  13. Friedenberg ZB, Harlow MC, Brighton CT (1971) Healing of nonunion of medial malleolus by means of direct current-case report. J Trauma 11(10):883. https://doi.org/10.1097/00005373-197110000-00010

    Article  CAS  PubMed  Google Scholar 

  14. Guillot-Ferriols M, Lanceros-Mendez S, Ribelles JLG, Ferrer GG (2022) Electrical stimulation: effective cue to direct osteogenic differentiation of mesenchymal stem cells? Biomater Adv 138:212918. https://doi.org/10.1016/j.bioadv.2022.212918

    Article  CAS  PubMed  Google Scholar 

  15. Martini F, Pellati A, Mazzoni E, Salati S, Caruso G, Contartese D et al (2020) Bone morphogenetic protein-2 signaling in the osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields. Int J Mol Sci 21(6):2104. https://doi.org/10.3390/ijms21062104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Durham EL, Howie RN, Hall S, Larson N, Oakes B, Houck R et al (2018) Optimizing bone wound healing using BMP2 with absorbable collagen sponge and Talymed nanofiber scaffold. J Trans Med 16:321. https://doi.org/10.1186/s12967-018-1697-y

    Article  CAS  Google Scholar 

  17. Zhang Q, Jiang M, Wang J, Liu C (2020) Roles and applications of in situ regeneration in tissue engineering. Chin Bull Life Sci 32(3):204–211

    Google Scholar 

  18. Chen JD, Zhang YJ, Pan PP, Fan TT, Chen MM, Zhang QQ (2015) In situ strategy for bone repair by facilitated endogenous tissue engineering. Colloids Surf B-Biointerfaces 135:581–587. https://doi.org/10.1016/j.colsurfb.2015.08.019

    Article  CAS  PubMed  Google Scholar 

  19. Li L, Lu H, Zhao Y, Luo J, Yang L, Liu W et al (2019) Functionalized cell-free scaffolds for bone defect repair inspired by self healing of bone fractures: a review and new perspectives. Mater Sci Eng C-Mater Bio App 98:1241–1251. https://doi.org/10.1016/j.msec.2019.01.075

    Article  CAS  Google Scholar 

  20. Chen L, Shao L, Wang F, Huang Y, Gao F (2019) Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. Rsc Adv 9(19):10494–10507. https://doi.org/10.1039/c8ra08788a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu HH, Peng HJ, Wu Y, Zhang C, Cai YZ, Xu GW et al (2013) The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials 34(18):4404–4417. https://doi.org/10.1016/j.biomaterials.2013.02.048

    Article  CAS  PubMed  Google Scholar 

  22. Ulsamer A, Ortuno MJ, Ruiz S, Susperregui ARG, Osses N, Rosa JL et al (2008) BMP-2 induces osterix expression through up-regulation of Dlx5 and its phosphorylation by p38. J Bio Chem 283(7):3816–3826. https://doi.org/10.1074/jbc.M704724200

    Article  CAS  Google Scholar 

  23. Lee W, Eo SR, Choi JH, Kim YM, Nam MH, Seo YK (2021) The osteogenic differentiation of human dental pulp stem cells through G0/G1 arrest and the p-ERK/Runx-2 pathway by sonic vibration. Int J Mol Sci 22(18):10167. https://doi.org/10.3390/ijms221810167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu SL, Luo C, Ferrier JM, Sodek J (1997) Evidence of ectokinase-mediated phosphorylation of osteopontin and bone sialoprotein by osteoblasts during bone formation in vitro. Biochem J 323:637–643. https://doi.org/10.1042/bj3230637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hendron E, Stockand JD (2002) Activation of mitogen-activated protein kinase (mitogen-activated protein kinase/extracellular signal-regulated kinase) cascade by aldosterone. Mol Biol Cell 13(9):3042–3054. https://doi.org/10.1091/mbc.E02-05-0260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G, Caverzasio J (2003) Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res 18(11):2060–2068. https://doi.org/10.1359/jbmr.2003.18.11.2060

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12(1):9–18. https://doi.org/10.1038/sj.cr.7290105

    Article  CAS  PubMed  Google Scholar 

  28. Celil AB, Campbell PG (2005) BMP-2 and insulin-like growth factor-I mediate osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 280(36):31353–31359. https://doi.org/10.1074/jbc.M503845200

    Article  CAS  PubMed  Google Scholar 

  29. Yeh LCC, Adamo ML, Olson MS, Lee JC (1997) Osteogenic protein-1 and insulin-like growth factor I synergistically stimulate rat osteoblastic cell differentiation and proliferation. Endocrinology 138(10):4181–4190. https://doi.org/10.1210/en.138.10.4181

    Article  CAS  PubMed  Google Scholar 

  30. Yeh LCC, Wilkerson M, Lee JC, Adamo ML (2015) IGF-1 receptor insufficiency leads to age-dependent attenuation of osteoblast differentiation. Endocrinology 156(8):2872–2879. https://doi.org/10.1210/en.2014-1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoemann CD, El-Gabalawy H, McKee MD (2009) In vitro osteogenesis assays: Influence of the primary cell source on alkaline phosphatase activity and mineralization. Pathol Bio 57(4):318–323. https://doi.org/10.1016/j.patbio.2008.06.004

    Article  CAS  Google Scholar 

  32. Ravikumar K, Boda SK, Basu B (2017) Synergy of substrate conductivity and intermittent electrical stimulation towards osteogenic differentiation of human mesenchymal stem cells. Bioelectrochemistry 116:52–64. https://doi.org/10.1016/j.bioelechem.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  33. Yan H, Li L, Wang Z, Wang Y, Guo M, Shi X et al (2020) Mussel-inspired conducting copolymer with aniline tetramer as intelligent biological adhesive for bone tissue engineering. Acs Biomater Sci Eng 6(1):634–646. https://doi.org/10.1021/acsbiomaterials.9b01601

    Article  CAS  PubMed  Google Scholar 

  34. Cao S, Zhao Y, Hu Y, Zou L, Chen J (2020) New perspectives: In-situ tissue engineering for bone repair scaffold. Compos Part B-Eng 202:108445. https://doi.org/10.1016/j.compositesb.2020.108445

    Article  CAS  Google Scholar 

  35. Yang Z, Xie L, Zhang B, Zhang G, Huo F, Zhou C et al (2022) Preparation of BMP-2/PDA-BCP bioceramic scaffold by DLP 3D printing and its ability for inducing continuous bone formation. Front Bioeng Biotechnol 10:854693. https://doi.org/10.3389/fbioe.2022.854693

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhuang W, Ye G, Wu J, Wang L, Fang G, Ye Z et al (2022) A 3D-printed bioactive polycaprolactone scaffold assembled with core/shell microspheres as a sustained BMP2-releasing system for bone repair. Biomater Adv 133:112619. https://doi.org/10.1016/j.msec.2021.112619

    Article  CAS  PubMed  Google Scholar 

  37. Zhou L, Dai K, Tang T (2003) Bmp-2 gene transfected human bone marrow mesenchymal stem cells inducing in vivo ectopic osteogenesis of nude mice. Chin J Rep Reconstr Surg 17(2):131–135

    Google Scholar 

  38. Kim HY, Lee JH, Yun JW, Park JH, Park BW, Rho GJ, Jang SJ, Park JS, Lee HC, Yoon YM, Hwang TS (2016) Development of porous beads to provide regulated BMP-2 stimulation for varying durations: in vitro and in vivo studies for bone regeneration. Biomacromol 17(5):1633–1642. https://doi.org/10.1021/acs.biomac.6b00009

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Dengfeng Project of Foshan Hospital of Traditional Chinese Medicine (202100043) and the Jilin Scientific and Technological Development Program (20200404110YY). Science and Technology Cooperation Project between Jilin Province and Chinese Academy of Science (No.2022SYHZ0022).

Author information

Authors and Affiliations

Authors

Contributions

SX, ZX, PZ and YW designed and conceived this study. SX and DZ carried out the experimental work and wrote the manuscript. HL and PZ carried out in vitro cell experiments. ZX and YW supervised the study and revised the manuscript. The author(s) read and approved the final manuscript.

Corresponding authors

Correspondence to Yu Wang or Zhiqiang Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Zeng, D., Luo, H. et al. Bone morphogenetic protein-2 and pulsed electrical stimulation synergistically promoted osteogenic differentiation on MC-3T3-E1 cells. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-023-04916-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04916-8

Keywords

Navigation