Skip to main content
Log in

Repositioning of simvastatin for diabetic colon cancer: role of CDK4 inhibition and apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

There is increased risk of colon cancer in both men and women having diabetes. The objective of the study was to evaluate the role of simvastatin in colon cancer associated with type 2 diabetes mellitus. Diabetes was induced by administering high fat diet with low dose streptozotocin model. 1,2 dimethylhydrazine (25 mg/kg, sc) was used for colon cancer induction. MTT assay, scratch assay, clonogenic assay and annexin V-FITC assay using flow cytometry were performed on HCT-15 cell line. Simvastatin controlled diabetes and colon cancer in animal models and reduced mRNA expression of CDK4 in colon tissues. In vitro studies revealed that simvastatin showed a decrease in cell viability and produced dose dependent decrease in clone formation. There was decrease in the rate of migration with increase in concentration of simvastatin in scratch assay. Moreover, simvastatin induced apoptosis as depicted from annexin V-FITC assay using flow cytometry as well as that revealed by tunnel assay. Our data suggest that simvastatin exhibits protective role in colon cancer associated with diabetes mellitus and acts possibly via down regulation of CDK4 and induction of apoptosis and hence can be considered for repositioning in diabetic colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used in the current study are available from the corresponding author on reasonable request.

Abbreviations

5-FU:

5-Fluorouracil

CDKs:

Cyclin dependent kinases

CEA:

Carcino embryogenic antigen

CMC:

Carboxy methyl cellulose

DEPC:

Diethyl pyrocarbonate

DMH:

1, 2-Dimethylhydrazine

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

GLUT-1:

Glucose transporter-1

GSH:

Reduced glutathione

HbA1c:

Glycosylated hemoglobin

HUVEC:

Human umbilical vein endothelial cells

MDA:

Malondialdehyde

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

OGTT:

Oral glucose tolerance tests

PBS:

Phosphate buffer saline

PI:

Propidium iodide

PS:

Phosphatidylserine

RNA:

Ribonucleic acid

RPMI:

Roswell Park Memorial Institute medium

SOD:

Super-oxide dismutase

TUNEL:

Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling

VEGF:

Vascular endothelial growth factor

References

  1. Oh SW, Kim YH, Choi YS, Chang DK, Son HJ, Rhee PL et al (2008) The comparison of the risk factors and clinical manifestations of proximal and distal colorectal cancer. Dis Colon Rectum 51:56–61

    Article  PubMed  Google Scholar 

  2. Yang YX, Hennessy S, Lewis JD (2005) Type 2 diabetes mellitus and the risk of colorectal cancer. Clin Gastroenterol Hepatol 3:587–594

    Article  PubMed  Google Scholar 

  3. Giouleme O, Diamantidis MD, Katsaros MG (2011) Is diabetes a causal agent for colorectal cancer? Pathophysiological and molecular mechanisms. World J Gastroenterol 17:444–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Limburg PJ, Vierkant RA, Fredericksen ZS, Leibson CL, Rizza RA, Gupta AK et al (2006) Clinically confirmed type 2 diabetes mellitus and colorectal cancer risk: a population-based, retrospective cohort study. Am J Gastroenterol 101:1872–1879

    Article  PubMed  Google Scholar 

  5. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA et al (2010) Diabetes and cancer: a consensus report. Diabetes Care 33:1674–1685

    Article  PubMed  PubMed Central  Google Scholar 

  6. Patel M, Patel BM (2018) Repurposing of sodium valproate in colon cancer associated with diabetes mellitus: role of HDAC inhibition. Eur J Pharm Sci 121:188–199

    Article  CAS  PubMed  Google Scholar 

  7. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nature reviews. Cancer 9(3):153–166

    CAS  PubMed  Google Scholar 

  8. Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24(11):1770–1783

    Article  CAS  PubMed  Google Scholar 

  9. Harbour JW, Dean DC (2000) The Rb/E2f pathway: expanding roles and emerging paradigms. Genes Dev 14(19):2393–2409

    Article  CAS  PubMed  Google Scholar 

  10. Fajas L, Blanchet E, Annicotte JS (2010) CDK4, pRB and E2F1: connected to insulin. Cell Div 2010(5):6

    Article  Google Scholar 

  11. Cordain L, Eades MR, Eades MD (2003) Hyperinsulinemic diseases of civilization: more than just syndrome X. Comp Biochem Physiol A Mol Integr Physiol 136:95–112

    Article  PubMed  Google Scholar 

  12. Patel BM, Shah NR (2016) Secoisolariciresinol diglucoside rich extract of L. usitatissimum prevents diabetic colon cancer through inhibition of CDK4. Biomed Pharmacother 83:733–739

    Article  PubMed  Google Scholar 

  13. Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group (1998) Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 339(19):1349–1357

  14. Kah J, Wüstenberg A, Keller AD, Sirma H, Montalbano R, Ocker M et al (2012) Selective induction of apoptosis by HMG-CoA reductase inhibitors in hepatoma cells and dependence on p53 expression. Oncol Rep 28:1077–1083

    Article  CAS  PubMed  Google Scholar 

  15. Alexandre L, Clark AB, Cheong E, Lewis MP, Hart AR (2012) Systematic review: potential preventive effects of statins against esophageal adenocarcinoma. Aliment Pharmacol Ther 36:301–311

    Article  CAS  PubMed  Google Scholar 

  16. Broughton T, Sington J, Beales IL (2012) Statin use is associated with a reduced incidence of colorectal cancer: a colonoscopy-controlled case-control study. BMC Gastroenterol 12:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Piechota-Polanczyk A, Goraca A, Demyanets S, Mittlboeck M, Domenig C, Neumayer C et al (2012) Simvastatin decreases free radicals formation in the human abdominal aortic aneurysm wall via NF-κB. Eur J Vasc Endovasc Surg 44:133–137

    Article  CAS  PubMed  Google Scholar 

  18. Kochuparambil ST, Al-Husein B, Goc A, Soliman S, Somanath PR (2011) Anticancer efficacy of simvastatin on prostate cancer cells and tumor xenografts is associated with inhibition of Akt and reduced prostate-specific antigen expression. J Pharmacol Exp Ther 336:496–505

    Article  CAS  PubMed  Google Scholar 

  19. Nicolaas APF, Hans MR, Jan S, Jaap H, Chris VB (2006) Clonogenic assay of cells in vitro. Nat Prot 1:2315–2319

    Article  Google Scholar 

  20. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320

    Article  CAS  PubMed  Google Scholar 

  21. Freeman DJ, Norrie J, Sattar N, Neely RD, Cobbe SM, Ford I et al (2001) Pravastatin and the development of diabetes mellitus. Evidence for a protective effect in the West of Scotland Coronary Prevention Study. Circulation 103:357–362

    Article  CAS  PubMed  Google Scholar 

  22. Hanas R, John G (2010) consensus statement on the worldwide standardization of the hemoglobin A1C measurement. Diabetes Care 33:1903–1904

    Article  PubMed  PubMed Central  Google Scholar 

  23. Saini V (2010) Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes 1:68–75

    Article  PubMed  PubMed Central  Google Scholar 

  24. Takagi T, Matsuda M, Abe M, Kobayashi H, Fukuhara A, Komuro R et al (2008) Effect of pravastatin on the development of diabetes and adiponectin production. Atherosclerosis 196:114–121

    Article  CAS  PubMed  Google Scholar 

  25. Abella A, Dubus P, Malumbres M, Rane SG, Kiyokawa H, Sicard A et al (2005) Cdk4 promotes adipogenesis through PPAR gamma activation. Cell Metab 2:239–249

    Article  CAS  PubMed  Google Scholar 

  26. Umesalma S, Sudhandiran G (2010) Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators Nf-Κb, Inos, Cox-2, Tnf-Α, and Il-6 In 1,2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin Pharmacol Toxicol 107:650–655

    Article  CAS  PubMed  Google Scholar 

  27. Hoque A, Chen H, Xu XC (2008) Statin induces apoptosis and cell growth arrest in prostate cancer cells. Cancer Epidemiol Biomark Prev 17:88–94

    Article  CAS  Google Scholar 

  28. Relja B, Meder F, Wilhelm K, Henrich D, Marzi I, Lehnert M (2010) Simvastatin inhibits cell growth and induces apoptosis and G0/G1 cell cycle arrest in hepatic cancer cells. Int J Mol Med 26(5):735–741

    Article  CAS  PubMed  Google Scholar 

  29. Liang YW, Chang CC, Hung CM, Chen TY, Huang TY, Hsu YC (2013) Preclinical activity of simvastatin induces cell cycle arrest in G1 via blockade of cyclin D-Cdk4 expression in non-small cell lung cancer (NSCLC). Int J Mol Sci 4(3):5806–5816

    Article  Google Scholar 

  30. Lee J, Jung KH, Park YS, Ahn JB, Shin SJ, Im SA et al (2009) Simvastatin plus irinotecan, 5-fluorouracil, and leucovorin (FOLFIRI) as first-line chemotherapy in metastatic colorectal patients: a multicenter phase II study. Cancer Chemother Pharmacol 64:657–663

    Article  CAS  PubMed  Google Scholar 

  31. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48(1):1–9

    Article  CAS  PubMed  Google Scholar 

  32. Ceriello A, Morocutti A, Mercuri F, Quagliaro L, Moro M, Damante G et al (2000) With nephropathy. Diabetes 49(12):2170–2177

    Article  CAS  PubMed  Google Scholar 

  33. Rainis T, Maor I, Lanir A, Shnizer S, Lavy A (2007) Enhanced oxidative stress and leucocyte activation in neoplastic tissues of the colon. Dig Dis Sci 52(2):526–530

    Article  PubMed  Google Scholar 

  34. Björkhem-bergman L, Lindh JD, Bergman P (2011) What is a relevant statin concentration in cell experiments claiming pleiotropic effects. Br J Clin Pharmacol 72(1):164–165

    Article  PubMed  PubMed Central  Google Scholar 

  35. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152

    Article  CAS  PubMed  Google Scholar 

  36. Lim YJ, Rhee JC, Bae YM, Chun WJ (2007) Celecoxib attenuates 5-fluorouracil-induced apoptosis in HCT-15 and HT-29 human colon cancer cells. World J Gastroenterol 13(13):1947–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng JP, Yuan XL, Li M, Fang J, Xie T, Zhou Y et al (2013) Secondary diabetes associated with 5-fluorouracil-based chemotherapy regimens in non-diabetic patients with colorectal cancer: results from a single-centre cohort study. Colorectal Dis 15:27–33

    Article  PubMed  Google Scholar 

  38. Lee J, Park D, Lee Y (2017) Metformin synergistically potentiates the antitumor effects of imatinib in colorectal cancer cells. Dev Reprod 21(2):139–150

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5:231–237

    Article  CAS  PubMed  Google Scholar 

  40. Bhadada SV, Goyal BR, Patel MM (2011) Angiogenic targets for potential disorders. Fund Clin Pharmacol 25:29–47

    Article  CAS  Google Scholar 

  41. Gibson SL, Boquoi A, Chen T, Sharpless NE, Brensinger C, Enders GH (2005) p16 (Ink4a) inhibits histologic progression and angiogenic signaling in min colon tumors. Cancer Biol Ther 4:1389–1394

    Article  CAS  PubMed  Google Scholar 

  42. Yasui M, Yamamoto H, Ngan CY, Damdinsuren B, Sugita Y, Fukunaga H et al (2006) Antisense to cyclin D1 inhibits vascular endothelial growth factor-stimulated growth of vascular endothelial cells: implication of tumor vascularization. Clin Cancer Res 12:4720–4729

    Article  CAS  PubMed  Google Scholar 

  43. Todaro GJ, Lazar GK, Green H (1965) The initiation of cell division in a contact-inhibited mammalian cell line. J Cell Physiol 66:325–333

    Article  CAS  PubMed  Google Scholar 

  44. Retzer-Lidl M, Schmid RM, Schneider G (2007) Inhibition of CDK4 impairs proliferation of pancreatic cancer cells and sensitizes towards TRAIL-induced apoptosis via downregulation of survivin. Int J Cancer 121(1):66–75

    Article  CAS  PubMed  Google Scholar 

  45. Thoms HC, Dunlop MG, Stark LA (2007) p38-mediated inactivation of cyclin D1/cyclin-dependent kinase 4 stimulates nucleolar translocation of RelA and apoptosis in colorectal cancer cells. Cancer Res 67:1660–1669

    Article  CAS  PubMed  Google Scholar 

  46. Thoms HC, Dunlop MG, Stark LA (2007) CDK4 inhibitors and apoptosis: a novel mechanism requiring nucleolar targeting of RelA. Cell Cycle 6(11):1293–1297

    Article  CAS  PubMed  Google Scholar 

  47. Mehta A, Patel BM (2019) Therapeutic opportunities in colon cancer: focus on phosphodiesterase inhibitors. Life Sci 230:150–161

    Article  CAS  PubMed  Google Scholar 

  48. Memon H, Patel BM (2019) Immune checkpoint inhibitors in non-small cell lung cancer: a bird’s eye view. Life Sci 233:116773

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude towards the Institute of Pharmacy, Nirma University, Ahmedabad, India for providing all the essential amenities in making this research paper.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

SG and VB carried out the study, collected and interpreted the data and wrote the manuscript. BMP designed the study, arranged the funds, guided for study protocol, data interpretation and manuscript writing and approved the manuscript. All the data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Bhoomika M. Patel.

Ethics declarations

Competing interests

No potential commercial or financial relationships are involved in the present work and the authors declare that no conflicts of interest are involved in the present research work.

Ethical approval

The experimental work was performed after approval from the Institutional Animal Ethics Committee (IAEC), Institute of Pharmacy, Nirma University, Ahmedabad (Protocol approval no. IP/PCOL/PHD/26/2019/007), as per the regulations of Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India.

Consent to participate

Not applicable.

Consent for publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajjar, S., Bora, V. & Patel, B.M. Repositioning of simvastatin for diabetic colon cancer: role of CDK4 inhibition and apoptosis. Mol Cell Biochem 478, 2337–2349 (2023). https://doi.org/10.1007/s11010-023-04663-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-023-04663-w

Keywords

Navigation