Skip to main content
Log in

Silencing lncRNA KCNQ1OT1 reduced hepatic ischemia reperfusion injury-induced pyroptosis by regulating miR-142a-3p/HMGB1 axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Background

Based on pre-existing evidence, KCNQ1OT1 has been pointed out to be closely related to myocardial and cerebral ischemia reperfusion injury diseases. Herein, the objective of our study is to probe into the potential function as well as the underlying mechanism of KCNQ1OT1 on hepatic ischemia reperfusion injury (HIRI).

Methods

Using C57BL/6 J mice and primary mouse hepatocytes were conducted to establish HIRI model in vivo and in vitro. Cell viability was examined using CCK-8 assay and EdU assay. Flow cytometric analysis was performed to evaluate the pyroptosis. Dual-luciferase reporter assay was employed to verify the interaction relationships. qRT-PCR and Western blot were adopted to analyze the mRNA and protein level. Histopathological alteration of liver tissue was evaluated by HE staining. Immunohistochemistry (IHC) was performed to measure NLRP3 and caspase 1.

Results

Our data revealed that KCNQ1OT1 expression was ascending in hepatic tissue of HIRI mouse. Moreover, deprivation of KCNQ1OT1 mitigated I/R-induced hepatic injury and pyroptosis in vivo. Further experiments demonstrated that silencing KCNQ1OT1 promoted proliferation and inhibited pyroptosis in hypoxia/reoxygenation (H/R)-induced primary mouse hepatocytes. Mechanistically, KCNQ1OT1 functioned as a competing endogenous RNA which sponged miR-142a-3p, therefore promoted HMGB1 expression to activate TLR4/NF-κB signaling pathway in HIRI.

Conclusion

LncRNA KCNQ1OT1 elevated HMGB1 expression through binding to miR-142a-3p, thereby promoting pyroptosis in HIRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

6. References

  1. Chen X, Zhang J, Xia L, Wang L, Li H, Liu H, Zhou J, Feng Z, Jin H, Yang J, Yang Y, Wu B, Zhang L, Chen G, Wang G (2020) beta-Arrestin-2 attenuates hepatic ischemia-reperfusion injury by activating PI3K/Akt signaling. Aging (Albany NY) 13:2251–2263. https://doi.org/10.18632/aging.202246

    Article  PubMed  Google Scholar 

  2. Linkermann A, Bräsen J, Darding M, Jin M, Sanz A, Heller J, De Zen F, Weinlich R, Ortiz A, Walczak H, Weinberg J, Green D, Kunzendorf U, Krautwald S (2013) Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA 110:12024–12029. https://doi.org/10.1073/pnas.1305538110

    Article  PubMed  PubMed Central  Google Scholar 

  3. Deng J (2021) Advanced research on the regulated necrosis mechanism in myocardial ischemia-reperfusion injury. Int J Cardiol 334:97–101. https://doi.org/10.1016/j.ijcard.2021.04.042

    Article  PubMed  Google Scholar 

  4. Zheng ZQ, Li ZX, Zhou GQ, Lin L, Zhang LL, Lv JW, Huang XD, Liu RQ, Chen F, He XJ, Kou J, Zhang J, Wen X, Li YQ, Ma J, Liu N, Sun Y (2019) Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Res 79:4612–4626. https://doi.org/10.1158/0008-5472.CAN-19-0799

    Article  CAS  PubMed  Google Scholar 

  5. Zhang H, Liu Y, Li M, Peng G, Zhu T, Sun X (2021) The Long Non-coding RNA SNHG12 functions as a competing endogenous rna to modulate the progression of cerebral ischemia/reperfusion injury. Mol Neurobiol. https://doi.org/10.1007/s12035-021-02648-8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li Z, Li Y, He Z, Li Z, Xu W, Xiang H (2021) The preventive effect of cardiac sympathetic denervation induced by 6-OHDA on myocardial ischemia-reperfusion injury: THE CHANGES of lncRNA/circRNAs-miRNA-mRNA network of the upper thoracic spinal cord in rats. Oxid Med Cell Longev 2021:2492286. https://doi.org/10.1155/2021/2492286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dai B, Qiao L, Zhang M, Cheng L, Zhang L, Geng L, Shi C, Zhang M, Sui C, Shen W, Sun Y, Chen Q, Hui D, Wang Y, Yang J (2019) lncRNA AK054386 functions as a ceRNA to sequester miR-199 and induce sustained endoplasmic reticulum stress in hepatic reperfusion injury. Oxid Med Cell Longev 2019:8189079. https://doi.org/10.1155/2019/8189079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang X, Gao Y, Qin J, Lu S (2018) The mechanism of long non-coding RNA MEG3 for hepatic ischemia-reperfusion: mediated by miR-34a/Nrf2 signaling pathway. J Cell Biochem 119:1163–1172. https://doi.org/10.1002/jcb.26286

    Article  CAS  PubMed  Google Scholar 

  9. Rong J, Pan H, He J, Zhang Y, Hu Y, Wang C, Fu Q, Fan W, Zou Q, Zhang L, Tang Y, Peng X, Wang P, Xiang Y, Peng J, Liu Z, Zheng Z (2020) Long non-coding RNA KCNQ1OT1/microRNA-204-5p/LGALS3 axis regulates myocardial ischemia/reperfusion injury in mice. Cell Signal 66:109441. https://doi.org/10.1016/j.cellsig.2019.109441

    Article  CAS  PubMed  Google Scholar 

  10. Ren Y, Gao XP, Liang H, Zhang H, Hu CY (2020) LncRNA KCNQ1OT1 contributes to oxygen-glucose-deprivation/reoxygenation-induced injury via sponging miR-9 in cultured neurons to regulate MMP8. Exp Mol Pathol 112:104356. https://doi.org/10.1016/j.yexmp.2019.104356

    Article  CAS  PubMed  Google Scholar 

  11. Kadono K, Kageyama S, Nakamura K, Hirao H, Ito T, Kojima H, Dery KJ, Li X, Kupiec-Weglinski JW (2021) Myeloid ikaros-SIRT1 signaling axis regulates hepatic inflammation and pyroptosis in ischemia-stressed mouse and human liver. J Hepatol. https://doi.org/10.1016/j.jhep.2021.11.026

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu H, Zhao Z, Wu T, Zhang Q, Lu F, Gu J, Jiang T, Xue J (2021) Inhibition of autophagy-dependent pyroptosis attenuates cerebral ischaemia/reperfusion injury. J Cell Mol Med 25:5060–5069. https://doi.org/10.1111/jcmm.16483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo X, Hu S, Liu JJ, Huang L, Zhong P, Fan ZX, Ye P, Chen MH (2021) Piperine protects against pyroptosis in myocardial ischaemia/reperfusion injury by regulating the miR-383/RP105/AKT signalling pathway. J Cell Mol Med 25:244–258. https://doi.org/10.1111/jcmm.15953

    Article  CAS  PubMed  Google Scholar 

  14. Nie C, Ding X, A R, Zheng M, Li Z, Pan S and Yang W, (2021) Hydrogen gas inhalation alleviates myocardial ischemia-reperfusion injury by the inhibition of oxidative stress and NLRP3-mediated pyroptosis in rats. Life Sci 272:119248. https://doi.org/10.1016/j.lfs.2021.119248

    Article  CAS  PubMed  Google Scholar 

  15. Wu Y, Qiu G, Zhang H, Zhu L, Cheng G, Wang Y, Li Y, Wu W (2021) Dexmedetomidine alleviates hepatic ischaemia-reperfusion injury via the PI3K/AKT/Nrf2-NLRP3 pathway. J Cell Mol Med 25:9983–9994. https://doi.org/10.1111/jcmm.16871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pan W, Wang L, Zhang XF, Zhang H, Zhang J, Wang G, Xu P, Zhang Y, Hu P, Zhang XD, Du RL, Wang H (2019) Hypoxia-induced microRNA-191 contributes to hepatic ischemia/reperfusion injury through the ZONAB/Cyclin D1 axis. Cell Death Differ 26:291–305. https://doi.org/10.1038/s41418-018-0120-9

    Article  CAS  PubMed  Google Scholar 

  17. Liu L, Yang B, Wang L, Huang J, Chen W, Ban Q, Zhang Y, You R (2020) Yin L and Guan YJJomcB. Biomimetic bone tissue engineering hydrogel scaffolds constructed using ordered CNTs and HA induce the proliferation and differentiation of BMSCs 8:558–567. https://doi.org/10.1039/c9tb01804b

    Article  CAS  Google Scholar 

  18. Pan WM, Wang H, Zhang XF, Xu P, Wang GL, Li YJ, Huang KP, Zhang YW, Zhao H, Du RL, Huang H, Zhang XD, Zhang JX (2020) miR-210 participates in hepatic ischemia reperfusion injury by forming a negative feedback loop with SMAD4. Hepatology 72:2134–2148. https://doi.org/10.1002/hep.31221

    Article  CAS  PubMed  Google Scholar 

  19. Guo B, Cheng Y, Yao L, Zhang J, Lu J, Qi H, Chen H (2021) LncRNA HOTAIR regulates the lipid accumulation in non-alcoholic fatty liver disease via miR-130b-3p/ROCK1 axis. Cell Signal 90:110190. https://doi.org/10.1016/j.cellsig.2021.110190

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Wen C, Zhang Y, Liu Z, He Q, Cui M, Peng H, Wang Y, Zhang X, Li X, Wang Q (2021) Aberrant expression of SNHG12 contributes to N, N-dimethylformamide-induced hepatic apoptosis both in short-term and long-term DMF exposure. Toxicol Res (Camb) 10:1022–1033. https://doi.org/10.1093/toxres/tfab088

    Article  PubMed  Google Scholar 

  21. Qin R, Huang W, Huang Y, Zhang Z, Su Y, Chen S, Wang H (2022) lncRNA MEG3 modulates hepatic stellate cell activation by sponging miR145 to regulate PPARgamma. Mol Med Rep. https://doi.org/10.3892/mmr.2021.12519

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tang B, Bao N, He G, Wang J (2019) Long noncoding RNA HOTAIR regulates autophagy via the miR-20b-5p/ATG7 axis in hepatic ischemia/reperfusion injury. Gene 686:56–62. https://doi.org/10.1016/j.gene.2018.10.059

    Article  CAS  PubMed  Google Scholar 

  23. Ying D, Zhou X, Ruan Y, Wang L, Wu X (2020) LncRNA Gm4419 induces cell apoptosis in hepatic ischemia-reperfusion injury via regulating the miR-455-SOX6 axis. Biochem Cell Biol 98:474–483. https://doi.org/10.1139/bcb-2019-0331

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Qu P, Yin W, Sun J (2021) Lnc-NEAT1 induces cell apoptosis and inflammation but inhibits proliferation in a cellular model of hepatic ischemia/reperfusion injury. J Int Med Res 49:300060519887251. https://doi.org/10.1177/0300060519887251

    Article  CAS  PubMed  Google Scholar 

  25. Ming N, Na HST, He JL, Meng QT, Xia ZY (2019) Propofol alleviates oxidative stress via upregulating lncRNA-TUG1/Brg1 pathway in hypoxia/reoxygenation hepatic cells. J Biochem 166:415–421. https://doi.org/10.1093/jb/mvz054

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Yi M, Wang D, Zhang Q, Yang L, Yang C (2020) LncRNA KCNQ1OT1 regulates endoplasmic reticulum stress to affect cerebral ischemia-reperfusion injury through targeting miR-30b/GRP78. Inflammation 43:2264–2275. https://doi.org/10.1007/s10753-020-01295-w

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Dai Y, Yan S, Shi Y, Han B, Li J, Cha L, Mu J (2017) Down-regulation of lncRNA KCNQ1OT1 protects against myocardial ischemia/reperfusion injury following acute myocardial infarction. Biochem Biophys Res Commun 491:1026–1033. https://doi.org/10.1016/j.bbrc.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  28. Yang F, Qin Y, Wang Y, Li A, Lv J, Sun X, Che H, Han T, Meng S, Bai Y, Wang L (2018) LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy. Cell Physiol Biochem 50:1230–1244. https://doi.org/10.1159/000494576

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Song Z, Li X, Xu S, Zhou S, Jin X, Zhang H (2020) Long noncoding RNA KCNQ1OT1 induces pyroptosis in diabetic corneal endothelial keratopathy. Am J Physiol Cell Physiol 318:C346–C359. https://doi.org/10.1152/ajpcell.00053.2019

    Article  CAS  PubMed  Google Scholar 

  30. Yang F, Qin Y, Lv J, Wang Y, Che H, Chen X, Jiang Y, Li A, Sun X, Yue E, Ren L, Li Y, Bai Y, Wang L (2018) Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis 9:1000. https://doi.org/10.1038/s41419-018-1029-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Niu B, Yao L, Zhang Y, Xia X, Su H (2021) LncRNA KCNQ1OT1 promoted hepatitis C virus-induced pyroptosis of β-cell through mediating the miR-223-3p/NLRP3 axis. Ann Transl Med 9:1387. https://doi.org/10.21037/atm-21-3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu T, Wu D, Zhang F, Zhang T, He M, Zhao Y, Li J, Li L, Xu Y (2021) miR-142a-3p enhances FlaA N/C protection against radiation-mediated intestinal injury by modulating IRAK1/NF-κB signaling pathway. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2021.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mi L, Zhang Y, Xu Y, Zheng X, Zhang X, Wang Z, Xue M, Jin X (2019) HMGB1/RAGE pro-inflammatory axis promotes vascular endothelial cell apoptosis in limb ischemia/reperfusion injury. Biomed Pharmacother 116:109005. https://doi.org/10.1016/j.biopha.2019.109005

    Article  CAS  PubMed  Google Scholar 

  34. Deng M, Tang Y, Li W, Wang X, Zhang R, Zhang X, Zhao X, Liu J, Tang C, Liu Z, Huang Y, Peng H, Xiao L, Tang D, Scott M, Wang Q, Liu J, Xiao X, Watkins S, Li J, Yang H, Wang H, Chen F, Tracey K, Billiar T, Lu B (2018) The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity 49:740-753.e7. https://doi.org/10.1016/j.immuni.2018.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hua S, Ma M, Fei X, Zhang Y, Gong F, Fang M (2019) Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated kupffer cells pyroptosis. Int Immunopharmacol 68:145–155. https://doi.org/10.1016/j.intimp.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  36. Xu L, Ge F, Hu Y, Yu Y, Guo K, Miao C, Fip J (2021) Sevoflurane postconditioning attenuates hepatic ischemia-reperfusion injury by limiting HMGB1/TLR4/NF-κB pathway via modulating microrna-142 in vivo and in vitro. Front Pharmacol 12:646307. https://doi.org/10.3389/fphar.2021.646307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gendy A, Elnagar M, Allam M, Mousa M, Khodir A, El-Haddad A, Elnahas O, Fayez S, El-Mancy SJB, Biomedecine p and pharmacotherapie, (2022) Berberine-loaded nanostructured lipid carriers mitigate warm hepatic ischemia/reperfusion-induced lesion through modulation of HMGB1/TLR4/NF-κB signaling and autophagy. Biomed Pharmacother 145:112122. https://doi.org/10.1016/j.biopha.2021.112122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by Hunan Cancer Hospital Climb Plan (Grant No. 2020NSFC-A002), Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ80020), and Hunan Provincial Natural Science Foundation of China (Grant No. 806268174046).

Author information

Authors and Affiliations

Authors

Contributions

CL contributed to conceptualization, methodology, and writing- Original draft preparation; YP contributed to data curation; HS and LW contributed to visualization and investigation; LJ contributed to validation; and SZ contributed to supervision, writing- reviewing, and editing.

Corresponding author

Correspondence to Shuangfa Zou.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

All animal experiments and related procedures were approved by the Ethics Committee of Hunan Cancer Hospital (approval No. 2021–074).

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Peng, Y., Sun, H. et al. Silencing lncRNA KCNQ1OT1 reduced hepatic ischemia reperfusion injury-induced pyroptosis by regulating miR-142a-3p/HMGB1 axis. Mol Cell Biochem 478, 1293–1305 (2023). https://doi.org/10.1007/s11010-022-04586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04586-y

Keywords

Navigation