Skip to main content

Advertisement

Log in

Twist alters the breast tumor microenvironment via choline kinase to facilitate an aggressive phenotype

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Twist (TWIST1) is a gene required for cell fate specification in embryos and its expression in mammary epithelium can initiate tumorigenesis through the epithelial-mesenchymal transition. To identify downstream target genes of Twist in breast cancer, we performed microarray analysis on the transgenic breast cancer cell line, MCF-7/Twist. One of the targets identified was choline kinase whose upregulation resulted in increased cellular phosphocholine and total choline containing compounds—a characteristic observed in highly aggressive metastatic cancers. To study the interactions between Twist, choline kinase, and their effect on the microenvironment, we used 1H magnetic resonance spectroscopy and found significantly higher phosphocholine and total choline, as well as increased phosphocholine/glycerophosphocholine ratio in MCF-7/Twist cells. We also observed significant increases in extracellular glucose, lactate, and [H +] ion concentrations in the MCF-7/Twist cells. Magnetic resonance imaging of MCF-7/Twist orthotopic breast tumors showed a significant increase in vascular volume and permeability surface area product compared to control tumors. In addition, by reverse transcription—quantitative polymerase chain reaction, we discovered that Twist upregulated choline kinase expression in estrogen receptor negative breast cancer cell lines through FOXA1 downregulation. Moreover, using The Cancer Genome Atlas database, we observed a significant inverse relationship between FOXA1 and choline kinase expression and propose that it could act as a modulator of the Twist/choline kinase axis. The data presented indicate that Twist is a driver of choline kinase expression in breast cancer cells via FOXA1 resulting in the generation of an aggressive breast cancer phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available in the Gene Expression Omnibus (GEO) repository under series GSE87705 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87705).

Abbreviations

FOV:

Field of view

MRI:

Magnetic resonance imaging

VV:

Vascular volume

PS:

Permeability surface area product

MRS:

Magnetic resonance spectroscopy

PC:

Phosphocholine

GPC:

Glycerophosphocholine

tCho:

Total choline

RT-qPCR:

Reverse transcription quantitative polymerase chain reaction

TCGA:

The Cancer Gene Atlas

References

  1. Rose CS, Malcolm S (1997) A TWIST in development. Trends Genet 13(10):384–387

    Article  CAS  PubMed  Google Scholar 

  2. Bourgeois P, Stoetzel C, Bolcato-Bellemin AL, Mattei MG, Perrin-Schmitt F (1996) The human H-twist gene is located at 7p21 and encodes a B-HLH protein that is 96% similar to its murine M-twist counterpart. Mamm Genome 7(12):915–917

    Article  CAS  PubMed  Google Scholar 

  3. Gitelman I (1997) Twist protein in mouse embryogenesis. Dev Biol 189(2):205–214

    Article  CAS  PubMed  Google Scholar 

  4. Technau U, Scholz CB (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47(7–8):531–539

    PubMed  Google Scholar 

  5. Castanon I, Von Stetina S, Kass J, Baylies MK (2001) Dimerization partners determine the activity of the Twist bHLH protein during Drosophila mesoderm development. Development 128(16):3145–3159

    Article  CAS  PubMed  Google Scholar 

  6. Cripps RM, Black BL, Zhao B, Lien CL, Schulz RA, Olson EN (1998) The myogenic regulatory gene Mef2 is a direct target for transcriptional activation by twist during Drosophila myogenesis. Genes Dev 12(3):422–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamamori Y, Wu HY, Sartorelli V, Kedes L (1997) The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein. Twist Mol Cell Biol 17(11):6563–6573

    Article  CAS  PubMed  Google Scholar 

  8. Hebrok M, Fuchtbauer A, Fuchtbauer EM (1997) Repression of muscle-specific gene activation by the murine Twist protein. Exp Cell Res 232(2):295–303

    Article  CAS  PubMed  Google Scholar 

  9. Lee MS, Lowe GN, Strong DD, Wergedal JE, Glackin CA (1999) TWIST, a basic helix-loop-helix transcription factor, can regulate the human osteogenic lineage. J Cell Biochem 75(4):566–577

    Article  CAS  PubMed  Google Scholar 

  10. Li L, Cserjesi P, Olson EN (1995) Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Dev Biol 172(1):280–292

    Article  CAS  PubMed  Google Scholar 

  11. Spicer DB, Rhee J, Cheung WL, Lassar AB (1996) Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science 272(5267):1476–1480

    Article  CAS  PubMed  Google Scholar 

  12. Verzi MP, Anderson JP, Dodou E et al (2002) N-twist, an evolutionarily conserved bHLH protein expressed in the developing CNS, functions as a transcriptional inhibitor. Dev Biol 249(1):174–190

    Article  CAS  PubMed  Google Scholar 

  13. Oshima A, Tanabe H, Yan T, Lowe GN, Glackin CA, Kudo A (2002) A novel mechanism for the regulation of osteoblast differentiation: transcription of periostin, a member of the fasciclin I family, is regulated by the bHLH transcription factor, twist. J Cell Biochem 86(4):792–804

    Article  CAS  PubMed  Google Scholar 

  14. el Ghouzzi V, Le Merrer M, Perrin-Schmitt F et al (1997) Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet 15(1):42–46

    Article  PubMed  Google Scholar 

  15. El Ghouzzi V, Legeai-Mallet L, Benoist-Lasselin C et al (2001) Mutations in the basic domain and the loop-helix II junction of TWIST abolish DNA binding in Saethre-Chotzen syndrome. FEBS Lett 492(1–2):112–118

    Article  PubMed  Google Scholar 

  16. El Ghouzzi V, Legeai-Mallet L, Aresta S et al (2000) Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location. Hum Mol Genet 9(5):813–819

    Article  PubMed  Google Scholar 

  17. Sosic D, Richardson JA, Yu K, Ornitz DM, Olson EN (2003) Twist regulates cytokine gene expression through a negative feedback loop that represses NF-kappaB activity. Cell 112(2):169–180

    Article  CAS  PubMed  Google Scholar 

  18. Stasinopoulos IA, Mironchik Y, Raman A, Wildes F, Winnard P Jr, Raman V (2005) HOXA5-twist interaction alters p53 homeostasis in breast cancer cells. J Biol Chem 280(3):2294–2299

    Article  CAS  PubMed  Google Scholar 

  19. Maestro R, Dei Tos AP, Hamamori Y et al (1999) Twist is a potential oncogene that inhibits apoptosis. Genes Dev 13(17):2207–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mironchik Y, Winnard PT Jr, Vesuna F et al (2005) Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res 65(23):10801–10809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang J, Mani SA, Donaher JL et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Ling MT, Guan XY et al (2004) Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene 23(2):474–482

    Article  PubMed  Google Scholar 

  23. Hamamori Y, Sartorelli V, Ogryzko V et al (1999) Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96(3):405–413

    Article  CAS  PubMed  Google Scholar 

  24. Vesuna F, Lisok A, van Diest P, Raman V (2021) Twist activates miR-22 to suppress estrogen receptor alpha in breast cancer. Mol Cell Biochem 476(6):2295–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vesuna F, Winnard P Jr, Glackin C, Raman V (2006) Twist overexpression promotes chromosomal instability in the breast cancer cell line MCF-7. Cancer Genet Cytogenet 167(2):189–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vesuna F, van Diest P, Chen JH, Raman V (2008) Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem Biophys Res Commun 367(2):235–241

    Article  CAS  PubMed  Google Scholar 

  27. Vesuna F, Lisok A, Kimble B, Raman V (2009) Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia 11(12):1318–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vesuna F, Lisok A, Kimble B et al (2012) Twist contributes to hormone resistance in breast cancer by downregulating estrogen receptor-alpha. Oncogene 31(27):3223–3234

    Article  CAS  PubMed  Google Scholar 

  29. Vesuna F, Bergman Y, Raman V (2017) Genomic pathways modulated by Twist in breast cancer. BMC Cancer 17(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ackerstaff E, Glunde K, Bhujwalla ZM (2003) Choline phospholipid metabolism: a target in cancer cells? J Cell Biochem 90(3):525–533

    Article  CAS  PubMed  Google Scholar 

  31. Glunde K, Raman V, Mori N, Bhujwalla ZM (2005) RNA interference-mediated choline kinase suppression in breast cancer cells induces differentiation and reduces proliferation. Cancer Res 65(23):11034–11043

    Article  CAS  PubMed  Google Scholar 

  32. Glunde K, Bhujwalla ZM (2007) Choline kinase alpha in cancer prognosis and treatment. Lancet Oncol 8(10):855–857

    Article  CAS  PubMed  Google Scholar 

  33. Bhujwalla ZM, Artemov D, Natarajan K, Solaiyappan M, Kollars P, Kristjansen PE (2003) Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after treatment with antiangiogenic agent TNP-470. Clin Cancer Res 9(1):355–362

    CAS  PubMed  Google Scholar 

  34. Ogan MD (1988) Albumin labeled with Gd-DTPA: an intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization. Invest Radiol 23(12):961

    Article  CAS  PubMed  Google Scholar 

  35. Tkac I, Starcuk Z, Choi IY, Gruetter R (1999) 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41(4):649–656

    Article  CAS  PubMed  Google Scholar 

  36. Bolan PJ, Meisamy S, Baker EH et al (2003) In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magn Reson Med 50(6):1134–1143

    Article  CAS  PubMed  Google Scholar 

  37. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Article  PubMed  Google Scholar 

  38. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. https://doi.org/10.1126/scisignal.2004088

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  40. Rouillard AD, Gundersen GW, Fernandez NF et al (2016) The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford). 2016:baw100. https://doi.org/10.1093/database/baw100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mori N, Wildes F, Takagi T, Glunde K, Bhujwalla ZM (2016) The tumor microenvironment modulates choline and lipid metabolism. Front Oncol 6:262

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen F, Zhuang X, Lin L et al (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13:45

    Article  PubMed  PubMed Central  Google Scholar 

  43. Duval K, Grover H, Han LH et al (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 32(4):266–277

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  45. Eckert MA, Lwin TM, Chang AT et al (2011) Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 19(3):372–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP, Yang J (2013) Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res 73(2):662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu A, Huang C, Cai X, Xu J, Yang D (2016) Twist promotes angiogenesis in pancreatic cancer by targeting miR-497/VEGFA axis. Oncotarget 7(18):25801–25814

    Article  PubMed  PubMed Central  Google Scholar 

  48. Krishnamachary B, Glunde K, Wildes F et al (2009) Noninvasive detection of lentiviral-mediated choline kinase targeting in a human breast cancer xenograft. Cancer Res 69(8):3464–3471

    Article  CAS  PubMed  Google Scholar 

  49. Mori N, Glunde K, Takagi T, Raman V, Bhujwalla ZM (2007) Choline kinase down-regulation increases the effect of 5-fluorouracil in breast cancer cells. Cancer Res 67(23):11284–11290

    Article  CAS  PubMed  Google Scholar 

  50. Bansal A, Harris RA, DeGrado TR (2012) Choline phosphorylation and regulation of transcription of choline kinase alpha in hypoxia. J Lipid Res 53(1):149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  CAS  PubMed  Google Scholar 

  52. Yang MH, Wu MZ, Chiou SH et al (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10(3):295–305

    Article  CAS  PubMed  Google Scholar 

  53. Russell S, Xu L, Kam Y et al (2022) Proton export upregulates aerobic glycolysis. BMC Biol 20(1):163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Albergaria A, Paredes J, Sousa B et al (2009) Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumours. Breast Cancer Res 11(3):R40

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xu Y, Qin L, Sun T et al (2017) Twist1 promotes breast cancer invasion and metastasis by silencing Foxa1 expression. Oncogene 36(8):1157–1166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge help from Ksenija Grgac. Some of the results shown here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Funding

Funding was provided by the NIH through grants R01CA082337 to MFP, NM, and ZMB and R01CA097226 to VR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venu Raman.

Ethics declarations

Conflict of interest

The author reports no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vesuna, F., Penet, MF., Mori, N. et al. Twist alters the breast tumor microenvironment via choline kinase to facilitate an aggressive phenotype. Mol Cell Biochem 478, 939–948 (2023). https://doi.org/10.1007/s11010-022-04555-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04555-5

Keywords

Navigation