Skip to main content
Log in

Protein kinase CK2 phosphorylates a conserved motif in the Notch effector E(spl)-Mγ

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Across metazoan animals, the effects of Notch signaling are mediated via the Enhancer of Split (E(spl)/HES) basic Helix–Loop–Helix–Orange (bHLH-O) repressors. Although these repressors are generally conserved, their sequence diversity is, in large part, restricted to the C-terminal domain (CtD), which separates the Orange (O) domain from the penultimate WRPW tetrapeptide motif that binds the obligate co-repressor Groucho. While the kinases CK2 and MAPK target the CtD and regulate Drosophila E(spl)-M8 and mammalian HES6, the generality of this regulation to other E(spl)/HES repressors has remained unknown. To determine the broader impact of phosphorylation on this large family of repressors, we conducted bioinformatics, evolutionary, and biochemical analyses. Our studies identify E(spl)-Mγ as a new target of native CK2 purified from Drosophila embryos, reveal that phosphorylation is specific to CK2 and independent of the regulatory CK2-β subunit, and identify that the site of phosphorylation is juxtaposed to the WRPW motif, a feature unique to and conserved in the Mγ homologues over 50 × 106 years of Drosophila evolution. Thus, a preponderance of E(spl) homologues (four out of seven total) in Drosophila are targets for CK2, and the distinct positioning of the CK2 and MAPK sites raises the prospect that phosphorylation underlies functional diversity of bHLH-O proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not Applicable.

References

  1. Dambly-Chaudiere C, Vervoort M (1998) The bHLH genes in neural development. Int J Dev Biol 42:269–273

    CAS  PubMed  Google Scholar 

  2. Delidakis C, Monastirioti M, Magadi SS (2014) E(spl): genetic, developmental, and evolutionary aspects of a group of invertebrate Hes proteins with close ties to Notch signaling. Curr Top Dev Biol 110:217–262. https://doi.org/10.1016/B978-0-12-405943-6.00006-3

    Article  PubMed  Google Scholar 

  3. Paroush Z, Finley RL, Kidd T, Wainwright SM, Ingham PW, Brent R, Ish-Horowcz D (1994) Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy related bHLH proteins. Cell 79:805–815

    Article  CAS  PubMed  Google Scholar 

  4. Sun H, Ghaffari S, Taneja R (2007) bHLH-Orange transcription factors in development and cancer. Transl Oncogenom 2:105–118

    Google Scholar 

  5. Ehebauer M, Hayward P, Arias AM (2006) Notch, a universal arbiter of cell fate decisions. Science 314:1414–1415

    Article  CAS  PubMed  Google Scholar 

  6. Bray S, Bernard F (2010) Notch targets and their regulation. Curr Top Dev Biol 92:253–275

    Article  CAS  PubMed  Google Scholar 

  7. Antfolk D, Antila C, Kemppainen K, Landor SK, Sahlgren C (2019) Decoding the PTM-switchboard of Notch. Biochim Biophys Acta Mol Cell Res 1866:118507. https://doi.org/10.1016/j.bbamcr.2019.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Celis JF, de Celis J, Ligoxygakis P, Preiss A, Delidakis C, Bray SJ (1996) Functional relationship between Notch, Su(H) and the bHLH genes of the E(spl) complex: the E(spl) genes mediate only a subset of Notch activities during imaginal development. Develop 122:2719–2928

    Article  Google Scholar 

  9. Cooper MTD, Tyler DM, Furriols M, Chalkiadaki A, Delidakis C, Bray SJ (2000) Spatially restricted factors cooperate with notc in the regulation of enhancer of split genes. Dev Biol 221:390–403

    Article  CAS  PubMed  Google Scholar 

  10. Maier D, Marte BM, Schafer W, Yu Y, Preiss A (1993) Drosophila evolution challenges postulated redundancy in the E(spl) gene complex. Proc Natl Acad Sci U S A 90:5464–5468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alifragis P, Poortinga G, Parkhurst SM, Delidakis C (1997) A network of interacting transcriptional regulators involved in Drosophila neural fate specification revealed by the yeast two-hybrid system. Proc Natl Acad Sci U S A 94:13099–13104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Majot AT, Sizemore TS, Bandyopadhyay M, Jozwick LM, Bidwai AP (2015) Protein kinase CK2: a window into the posttranslational regulation of the E(spl)/HES repressors from invertebrates and vertebrates. In: Ahmed K, Issinger O-G, Szyska R (eds) Protein kinase CK2 cellular function in normal and disease states. Springer, New York, pp 81–108

    Chapter  Google Scholar 

  13. Trott RL, Kalive M, Paroush Z, Bidwai AP (2001) Drosophila melanogaster casein kinase II interacts with and phosphorylates the basic-helix-loop-helix (bHLH) proteins M5, M7, and M8 derived from the Enhancer of split Complex. J Biol Chem 276:2159–2167

    Article  CAS  PubMed  Google Scholar 

  14. Karandikar U, Trott RL, Yin J, Bishop CP, Bidwai AP (2004) Drosophila CK2 regulates eye morphogenesis via phosphorylation of E(spl)M8. Mech Dev 121:273–286

    Article  CAS  PubMed  Google Scholar 

  15. Kahali B, Kim J, Karandikar U, Bishop CP, Bidwai AP (2010) Evidence that the C-terminal domain (CtD) autoinhibits neural repression by Drosophila E(spl)M8. Genesis 48:44–55

    CAS  PubMed  Google Scholar 

  16. Bandyopadhyay M, Bishop CP, Bidwai AP (2016) The Conserved MAPK Site in E(spl)-M8, an Effector of Drosophila Notch Signaling, Controls Repressor Activity during Eye Development. PLoS ONE 11:e0159508. https://doi.org/10.1371/journal.pone.0159508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Majot AT, Bidwai AP (2017) Analysis of transient hypermorphic activity of E(spl)D during R8 specification. PLoS ONE 12:e0186439. https://doi.org/10.1371/journal.pone.0186439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bose A, Majot AT, Bidwai AP (2014) The Ser/Thr phosphatase PP2A regulatory subunit Widerborst inhibits notch signaling. PLoS ONE 9:e101884. https://doi.org/10.1371/journal.pone.0101884

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kahali B, Bose A, Karandikar U, Bishop CP, Bidwai A (2009) On the mechanism underlying the divergent retinal and bristle defects of M8* (E(spl)D) in Drosophila. Genesis 47:456–468. https://doi.org/10.1002/dvg.20521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Belanger-Jasmin S, Llamosas E, Tang Y, Joachim K, Osiceanu AM, Jhas S, Stifani S (2007) Inhibition of cortical astrocyte differentiation by Hes6 requires amino- and carboxy-terminal motifs important for dimerization and phosphorylation. J Neurochem 103:2022–2034

    Article  CAS  PubMed  Google Scholar 

  21. Gratton M-O, Torban E, Jasmin SB, Theriault FM, German MS, Stifani S (2003) Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms. Mol Cell Biol 23:6922–6935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yasukawa T, Kanei-Ishii C, Maekawa T, Fujimoto J, Yamamoto T, Ishii S (1995) Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J Biol Chem 270:25328–25331

    Article  CAS  PubMed  Google Scholar 

  23. Kalive M, Trott RL, Bidwai AP (2001) A gene located at 72A in Drosophila melanogaster encodes a novel zinc-finger protein that interacts with protein kinase CK2. Mol Cell Biochem 227:99–105

    Article  CAS  PubMed  Google Scholar 

  24. Trott RL, Kalive M, Karandikar U, Rummer R, Bishop CP, Bidwai AP (2001) Identification and characterization of proteins that interact with Drosophila melanogaster protein kinase CK2. Mol Cell Biochem 227:91–98

    Article  CAS  PubMed  Google Scholar 

  25. Bidwai AP, Reed JC, Glover CVC (1993) The phosphorylation of calmodulin by the catalytic subunit of casein kinase II is inhibited by the regulatory subunit. Arch Biochem Biophys 300:265–270

    Article  CAS  PubMed  Google Scholar 

  26. Bidwai AP, Hanna DE, Glover CVC (1992) The free catalytic subunit of casein kinase II is not toxic in vivo. J Biol Chem 267:18790–18796

    Article  CAS  PubMed  Google Scholar 

  27. Glover CVC, Shelton ER, Brutlag DL (1983) Purification and characterization of a type II casein kinase from Drosophila melanogaster. J Biol Chem 258:3258–3265

    Article  CAS  PubMed  Google Scholar 

  28. Meggio F, Boldyreff B, Marin O, Marchiori F, Perich JW, Issinger OG, Pinna LA (1992) The effect of polylysine on casein-kinase-2 activity is influenced by both the structure of the protein/peptide substrates and the subunit composition of the enzyme. Eur J Biochem 205:939–945

    Article  CAS  PubMed  Google Scholar 

  29. Beverly SM, Wilson AC (1984) Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J Mol Evol 21:1–13

    Article  Google Scholar 

  30. Kuenzel EA, Mulligan JA, Sommercorn J, Krebs EG (1987) Substrate specificity determinants for casein kinase II as deduced from studies with synthetic peptides. J Biol Chem 262:9136–9140

    Article  CAS  PubMed  Google Scholar 

  31. Hrubey TW, Roach PJ (1990) Phosphoserine in peptide substrates can specify casein kinase II action. Biochem Biophys Res Commun 172:190–196

    Article  CAS  PubMed  Google Scholar 

  32. Bandyopadhyay M, Arbet S, Bishop CP, Bidwai AP (2017) Drosophila protein kinase CK2: genetics, regulatory complexity and emerging roles during development. Pharmaceuticals (Basel). https://doi.org/10.3390/ph10010004

    Article  Google Scholar 

  33. Kahali B, Trott R, Paroush Z, Allada R, Bishop CP, Bidwai AP (2008) Drosophila CK2 phosphorylates Hairy and regulates its activity in vivo. Biochem Biophys Res Commun 373:637–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dahmus GK, Glover CVC, Brutlag D, Dahmus ME (1984) Similarities in structure and function of calf thymus and Drosophila casein kinase II. J Biol Chem 259:9001–9006

    Article  CAS  PubMed  Google Scholar 

  35. Lin WJ, Tuazon PT, Traugh JA (1991) Characterization of the catalytic subunit of casein kinase II expressed in Escherichia coli and regulation of activity. J Biol Chem 266:5664–5669

    Article  CAS  PubMed  Google Scholar 

  36. Meggio F, Marin O, Pinna LA (1994) Substrate specificity of protein kinase CK2. Cell Mol Biol Res 40:401–409

    CAS  PubMed  Google Scholar 

  37. Kuenzel EA, Krebs EG (1985) A synthetic substrate specific for casein kinase II. Proc Natl Acad Sci U S A 82:737–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hathaway GM, Lubben TH, Traugh JA (1980) Inhibition of casein kinase II by heparin. J Biol Chem 255:8038–8041

    Article  CAS  PubMed  Google Scholar 

  39. Marin O, Bustos VH, Cesaro L, Meggio F, Pagano MA, Antonelli M, Allende CC, Pinna LA, Allende JE (2003) A noncanonical sequence phosphorylated by casein kinase 1 in beta-catenin may play a role in casein kinase 1 targeting of important signaling proteins. Proc Natl Acad Sci U S A 100:10193–10200. https://doi.org/10.1073/pnas.17339091001733909100[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Price MA (2006) CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev 20:399–410. https://doi.org/10.1101/gad.1394306

    Article  CAS  PubMed  Google Scholar 

  41. Guruharsha KG, Rual JF, Zhai B, Mintseris J, Vaidya P, Vaidya N, Beekman C, Wong C, Rhee DY, Cenaj O, McKillip E, Shah S, Stapleton M, Wan KH, Yu C, Parsa B, Carlson JW, Chen X, Kapadia B, Vijayraghavan K, Gygi SP, Celniker SE, Obar RA, Artavanis-Tsakonas S (2011) A protein complex network of Drosophila melanogaster. Cell 147:690–703. https://doi.org/10.1016/j.cell.2011.08.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37:509–516. https://doi.org/10.1016/j.tibs.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  43. Chakrabortee S, Byers JS, Jones S, Garcia DM, Bhullar B, Chang A, She R, Lee L, Fremin B, Lindquist S, Jarosz DF (2016) Intrinsically disordered proteins drive emergence and inheritance of biological traits. Cell 167(369–381):e12. https://doi.org/10.1016/j.cell.2016.09.017

    Article  CAS  Google Scholar 

  44. Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, Bertin TK, Rao PH, Chen R, Donehower LA, Gannon F, Lee BH (2014) Notch activation as a driver of osteogenic sarcoma. Cancer Cell 26:390–401. https://doi.org/10.1016/j.ccr.2014.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L (2021) Targeting notch in oncology: the path forward. Nat Rev Drug Discov 20:125–144. https://doi.org/10.1038/s41573-020-00091-3

    Article  CAS  PubMed  Google Scholar 

  46. Aster JC, Pear WS, Blacklow SC (2017) The varied roles of notch in cancer. Annu Rev Pathol 12:245–275. https://doi.org/10.1146/annurev-pathol-052016-100127

    Article  CAS  PubMed  Google Scholar 

  47. Andersson ER, Lendahl U (2014) Therapeutic modulation of Notch signalling–are we there yet? Nat Rev Drug Discov 13:357–378. https://doi.org/10.1038/nrd4252

    Article  CAS  PubMed  Google Scholar 

  48. Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17:722–735. https://doi.org/10.1038/nrm.2016.94

    Article  CAS  PubMed  Google Scholar 

  49. Baonza A, Freeman M (2001) Notch signalling and the initiation of neural development in the Drosophila eye. Develop 128:3889–3898

    Article  CAS  Google Scholar 

  50. Ligoxygakis P, Yu SY, Delidakis C, Baker NE (1998) A subset of Notch functions during Drosophila eye development require Su(H) and E(spl) gene complex. Develop 125:2893–2900

    Article  CAS  Google Scholar 

  51. Lubensky DK, Pennington MW, Shraiman BI, Baker NE (2011) A dynamical model of ommatidial crystal formation. Proc Natl Acad Sci U S A 108:11145–11150. https://doi.org/10.1073/pnas.1015302108

    Article  PubMed  PubMed Central  Google Scholar 

  52. Borggrefe T, Giaimo B (2018) Molecular mechanisms of notch signaling. Advances in experimental medicine and biology. Springer, Berlin

    Book  Google Scholar 

  53. Owen CI, Bowden R, Parker MJ, Patterson J, Patterson J, Price S, Sarkar A, Castle B, Deshpande C, Splitt M, Ghali N, Dean J, Green AJ, Crosby C, Tatton-Brown K (2018) Extending the phenotype associated with the CSNK2A1-related Okur-Chung syndrome-A clinical study of 11 individuals. Am J Med Genet A. https://doi.org/10.1002/ajmg.a.38610

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chiu ATG, Pei SLC, Mak CCY, Leung GKC, Yu MHC, Lee SL, Vreeburg M, Pfundt R, van der Burgt I, Kleefstra T, Frederic TM, Nambot S, Faivre L, Bruel AL, Rossi M, Isidor B, Kury S, Cogne B, Besnard T, Willems M, Reijnders MRF, Chung BHY (2018) Okur-Chung neurodevelopmental syndrome: Eight additional cases with implications on phenotype and genotype expansion. Clin Genet 93:880–890. https://doi.org/10.1111/cge.13196

    Article  CAS  PubMed  Google Scholar 

  55. Nakashima M, Tohyama J, Nakagawa E, Watanabe Y, Siew CG, Kwong CS, Yamoto K, Hiraide T, Fukuda T, Kaname T, Nakabayashi K, Hata K, Ogata T, Saitsu H, Matsumoto N (2019) Identification of de novo CSNK2A1 and CSNK2B variants in cases of global developmental delay with seizures. J Hum Genet 64:313–322. https://doi.org/10.1038/s10038-018-0559-z

    Article  CAS  PubMed  Google Scholar 

  56. Poirier K, Hubert L, Viot G, Rio M, Billuart P, Besmond C, Bienvenu T (2017) CSNK2B splice site mutations in patients cause intellectual disability with or without myoclonic epilepsy. Hum Mutat 38:932–941. https://doi.org/10.1002/humu.23270

    Article  CAS  PubMed  Google Scholar 

  57. Colavito D, Del-Giudice E, Ceccato C, Dalle-Carbonare M, Leon A, Suppiej A (2018) Are CSNK2A1 gene mutations associated with retinal dystrophy? Report of a patient carrier of a novel de novo splice site mutation. J Hum Genet. https://doi.org/10.1038/s10038-018-0434-y

    Article  PubMed  Google Scholar 

  58. Ferguson FM, Gray NS (2018) Kinase inhibitors: the road ahead. Nat Rev Drug Discov 17:353–377. https://doi.org/10.1038/nrd.2018.21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mohna Bandyopadhyay and Sophia Zhang for technical assistance.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

LJ and AB contributed to design of the work, as well as acquisition, analysis, and interpretation of data. LJ and AB drafted the work. LJ and AB approved the version to be published. LJ and AB agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Ashok P. Bidwai.

Ethics declarations

Conflicts of interest

The authors have not disclosed any competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jozwick, L.M., Bidwai, A.P. Protein kinase CK2 phosphorylates a conserved motif in the Notch effector E(spl)-Mγ. Mol Cell Biochem 478, 781–790 (2023). https://doi.org/10.1007/s11010-022-04539-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04539-5

Keywords

Navigation