Skip to main content

Advertisement

Log in

Integrated view of molecular diagnosis and prognosis of dengue viral infection: future prospect of exosomes biomarkers

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Dengue viruses (DENVs) are the viruses responsible for dengue infection which affects lungs, liver, heart and also other organs of individuals. DENVs consist of the group of four serotypically diverse dengue viruses transmitted in tropical and sub-tropical countries of world. Aedes mosquito is the principal vector which spread the infection from infected person to healthy humans. DENVs can cause different syndromes depending on serotype of virus which range from undifferentiated mild fever to dengue hemorrhagic fever resulting in vascular leakage due to release of cytokine and Dengue shock syndrome with fluid loss and hypotensive shock, or other severe manifestations such as bleeding and organ failure. Increase in dengue cases in pediatric population is a major concern. Transmission of dengue depends on various factors like temperature, rainfall, and distribution of Aedes aegypti mosquitoes. The present review describes a comprehensive overview of dengue, pathophysiology, diagnosis, treatment with an emphasis on potential of exosomes as biomarkers for early prediction of dengue in pediatrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Gubler DJ (2014) Dengue and dengue hemorrhagic fever, 2nd edn.

  2. Wahala WM, Silva AM (2011) The human antibody response to dengue virus infection. Viruses 3:2374–2395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Halstead SB (2007) Dengue. Lancet 370:1644–1652

    Article  PubMed  Google Scholar 

  4. Rothman AL (2011) Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol 11:532–543

    Article  CAS  Google Scholar 

  5. Barniol J, Roger G, Thomas J (2011) Usefulness and applicability of the revised dengue case classification by disease: multi-centre study in 18 countries. BMC Infect Dis. https://doi.org/10.1186/1471-2334-11-106

    Article  PubMed  PubMed Central  Google Scholar 

  6. Oliver JB, Peter WG, Samir B, Jane PM, John SB, Anne GH et al (2012) Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6:e1760

    Article  Google Scholar 

  7. Jane PM, Oliver JB, Thomas WS, Chenting Z, David MP, Kirsten AD et al (2014) Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol 22:138–146. https://doi.org/10.1016/j.tim.2013.12.011

    Article  CAS  Google Scholar 

  8. Cristina CM, Thomas SJ (2014) Dengue human infection model: introduction. J Infect Dis 209:s37–s39. https://doi.org/10.1093/infdis/jiu061

    Article  Google Scholar 

  9. Halstead SB, Nimmannitya S, Cohen SN (1970) Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med 42:311–328

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Littaua R, Kurane I, Ennis F (1990) Human IgG Fc receptor II mediates antibody dependent enhancement of dengue virus infection. J Immunol 144:3183–3186

    CAS  PubMed  Google Scholar 

  11. National Vector Borne Disease Control Programme (2021). https://nvbdcp.gov.in/

  12. Rijal KR, Adhikari B, Ghimire B, Dhungel B, Pyakurel UR, Shah P et al (2021) Epidemiology of dengue virus infections in Nepal, 2006–2019. Infect Dis Poverty 10:52. https://doi.org/10.1186/s40249-021-00837-0

    Article  PubMed  PubMed Central  Google Scholar 

  13. Saboor A, Muhammad AA, Asad A, Zia U, Muhammad IA, Abdul M (2017) Epidemiology of dengue in Pakistan, present prevalence and guidelines for future control. Int J Mosquito Res 4:25–32

    Google Scholar 

  14. PAHO (2019) Epidemiological update: dengue. PAHO, Washington

    Google Scholar 

  15. Khetarpal N, Khanna I (2016) Dengue fever: causes, complications, and vaccine strategies. J Immunol Res 2016:1–14. https://doi.org/10.1155/2016/6803098

    Article  CAS  Google Scholar 

  16. Kanai R, Kalipada K, Karen A, Hannah LG, Michel L, Erol F et al (2006) Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80:11000–11008. https://doi.org/10.1128/JVI.01735-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Zhang W, Wei Z, Steven O, David C, James HS et al (2004) Conformational changes of the flavivirus E glycoprotein. Structure 12:1607–1618. https://doi.org/10.1016/j.str.2004.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375:291–298

    Article  CAS  PubMed  Google Scholar 

  19. Muller DA, Young PR (2013) The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antivir Res 98:192–208. https://doi.org/10.1016/j.antiviral.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  20. David LA, Clay WB, Somnath D, Jamie K, Joyce J, Thomas JJ et al (2014) Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343:881–885

    Article  Google Scholar 

  21. Garcia M, Wehbe M, Lévêque N, Bodet C (2017) Skin innate immune response to flaviviral infection. Eur Cytokine Netw 28:41–51. https://doi.org/10.1684/ecn.2017.0394

    Article  CAS  PubMed  Google Scholar 

  22. Loo YM, Gale M (2011) Immune signaling by RIG-I-like receptors. Immunity 34:680–692. https://doi.org/10.1016/j.immuni.2011.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511. https://doi.org/10.1038/nri1391

    Article  CAS  PubMed  Google Scholar 

  24. Nasirudeen AMA, Hui HW, Peiling T, Shengli X, Kong PL, Ding XL (2011) RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5:e926. https://doi.org/10.1371/journal.pntd.0000926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jennifer PW, Ping L, Eicke L, Douglas TG, Robert WF, Daniel HL (2006) Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177:7114–7121. https://doi.org/10.4049/jimmunol.177.10.7114

    Article  Google Scholar 

  26. David CC, Long TH, Ahmad NMN, Hongping D, Mark JS, Martin LH et al (2016) Evasion of early innate immune response by 2′-omethylation of dengue genomic RNA. Virology 499:259–266. https://doi.org/10.1016/j.virol.2016.09.022

    Article  CAS  Google Scholar 

  27. Zhenjian H, Xun Z, Weitao W, Jie Y, Yiwen H, Jiahui C et al (2016) Dengue virus subverts host innate immunity by targeting adaptor protein MAVS. J Virol 90:7219–7230. https://doi.org/10.1128/jvi.00221-16

    Article  Google Scholar 

  28. Dalrymple NA, Cimica V, Mackow ER (2015) Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: dengue virus serotype 1 NS4A is a unique interferon-regulating virulence determinant. mBio. https://doi.org/10.1128/mbio.00553-15

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sebastian A, Priya L, Maria TSA, Ana MM, Jenish P, Francise L et al (2017) Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat Microbiol 2:7037. https://doi.org/10.1038/nmicrobiol.2017.37

    Article  CAS  Google Scholar 

  30. Barbier V, Lang D, Valois S, Rothman AL, Medin CL (2017) Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission. Virology 500:149–160. https://doi.org/10.1016/j.virol.2016.10.022

    Article  CAS  PubMed  Google Scholar 

  31. Muñoz JJL, Sánchez BGG, Laurent RM, García SA (2003) Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci USA 100:14333–14338. https://doi.org/10.1073/pnas.2335168100

    Article  CAS  Google Scholar 

  32. Juliet M, Maudry LR, Ana MM, Ricardo R, Giuseppe P, Viviana S et al (2013) Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog 9:e1003265. https://doi.org/10.1371/journal.ppat.1003265

    Article  CAS  Google Scholar 

  33. Cooray S (2004) The pivotal role of phosphatidylinositol 3-kinase–Akt signal transduction in virus survival. J Gen Virol 85:1065–1076. https://doi.org/10.1099/vir.0.19771-0

    Article  CAS  PubMed  Google Scholar 

  34. Hsin HC, Chien CC, Yee SL, Po CC, Zi YL, Chiou FL et al (2017) AR-12 suppresses dengue virus replication by downregulation of PI3K/AKT and GRP78. Antivir Res 142:158–168. https://doi.org/10.1016/j.antiviral.2017.02.015

    Article  CAS  Google Scholar 

  35. Panisadee A, Anja F, Richard EH, Pawit S, Soonjeon Y, Michael SD et al (2010) Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med 207:793–806. https://doi.org/10.1084/jem.20092545

    Article  CAS  Google Scholar 

  36. Somchai T, Chamaiporn T, Nuntaya P, Tanapan P, Adisak S, Sansanee N et al (2016) Secreted NS1 protects dengue virus from mannose binding lectin-mediated neutralization. J Immunol 197:4053–4065. https://doi.org/10.4049/jimmunol.1600323

    Article  CAS  Google Scholar 

  37. Jonas NC, Emiliana MDS, Diego A, Diego RC, Iamara DSA, Luciano NDM et al (2016) Inhibition of the membrane attack complex by dengue virus NS1 through interaction with vitronectin and terminal complement proteins. J Virol 90:9570–9581. https://doi.org/10.1128/jvi.00912-16

    Article  Google Scholar 

  38. Kurosu T, Chaichana P, Yamate M, Anantapreecha S, Ikuta K (2007) Secreted complement regulatory protein clusterin interacts with dengue virus nonstructural protein 1. Biochem Biophys Res Commun 362:1051–1056. https://doi.org/10.1016/j.bbrc.2007.08.137

    Article  CAS  PubMed  Google Scholar 

  39. Pavan KK, Sanket SP, Rajgokul KS, Vikas S, Mahendran C, Akhil CB et al (2013) Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J Virol 87:8870–8883. https://doi.org/10.1128/jvi.02774-12

    Article  Google Scholar 

  40. Pavan KK, Rajgokul KS, Sanket SP, Inderjeet K, Srikrishna M, Guruprasad RM et al (2015) Dengue NS3, an RNAi suppressor, modulates the human miRNA pathways through its interacting partner. J Biochem 471:89–99. https://doi.org/10.1042/bj20150445

    Article  Google Scholar 

  41. Lennemann NJ, Coyne CB (2017) Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B. Autophagy 13:322–332. https://doi.org/10.1080/15548627.2016.1265192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li J, Rongjie H, Weiyong L, Zhaoni C, Shijun Z, Renbin H (2012) Dengue virus utilizes calcium modulating cyclophilin-binding ligand to subvert apoptosis. Biochem Biophys Res Commun 418:622–627. https://doi.org/10.1016/j.bbrc.2012.01.050

    Article  CAS  PubMed  Google Scholar 

  43. Kumar R, Singh N, Abdin ZM, Patel AH, Medigeshi GR (2017) Dengue virus capsid interacts with DDX3X—a potential mechanism for suppression of antiviral functions in dengue infection. Front Cell Infect Microbiol 7:542. https://doi.org/10.3389/fcimb.2017.00542

    Article  CAS  PubMed  Google Scholar 

  44. Innis BL, Nisalak A, Nimmannitya S, Kusalerdchariya S, Chongswasdi V, Suntayakorn S et al (1989) An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and Japanese encephalitis co-circulate. Am J Trop Med Hyg 40:418–427. https://doi.org/10.4269/ajtmh.1989.40.418

    Article  CAS  PubMed  Google Scholar 

  45. Chanama S, Surapee A, Atchareeya A, Areerat SG, Ichiro K, Pathom S et al (2004) Analysis of specific IgM responses in secondary dengue virus infections: levels and positive rates in comparison with primary infections. J Clin Virol 31:185–189. https://doi.org/10.1016/j.jcv.2004.03.005

    Article  CAS  PubMed  Google Scholar 

  46. Kuno G, Gomez I, Gubler DJ (1991) An ELISA procedure for the diagnosis of dengue infections. J Virol Methods 33:101–113. https://doi.org/10.1016/0166-0934(91)90011-N

    Article  CAS  PubMed  Google Scholar 

  47. Yun PS, Kuang LC, Fen SC, Yun YY, Chow L, Chien LJ et al (2003) Comparison of a capture immunoglobulin M (IgM) and IgG ELISA and non-structural protein NS1 serotype-specific IgG ELISA for differentiation of primary and secondary dengue virus infections. Clin Diagn Lab Immunol 10:622–630

    Google Scholar 

  48. Houng HSH, Chung Ming RC, Vaughn DW, Kanesa-thasan N (2001) Development of a fluorogenic RT-PCR system for quantitative identification of dengue virus serotypes 1–4 using conserved and serotype-specific 3-noncoding sequences. J Virol Methods 95:19–32. https://doi.org/10.1016/S0166-0934(01)00280-4

    Article  CAS  PubMed  Google Scholar 

  49. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV et al (1992) Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 30:545–551. https://doi.org/10.1128/jcm.30.3.545-551.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shu PY, Huang JH (2004) Current advances in dengue diagnosis. Clin Diagn Lab Immunol 11:642–650. https://doi.org/10.1128/CDLI.11.4.642650.2004

    Article  PubMed  PubMed Central  Google Scholar 

  51. Marcelo G, Gustavo JM, Ana LDP, Marcelo T, Lucía IP, Héctor R et al (2010) Dynamic laser speckle: decision models with computational intelligence techniques. Proc SPIE 2010:7387. https://doi.org/10.1117/12.870688

    Article  Google Scholar 

  52. Vázquez S, Cabezas S, Pérez AB, Pupo M, Ruiz D, Calzada N et al (2007) Kinetics of antibodies in sera, saliva, and urine samples from adult patients with primary or secondary dengue 3 virus infections. Int J Infect Dis 11:256–262. https://doi.org/10.1016/j.ijid.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  53. Nawa M (2005) Immunoglobulin A antibody responses in dengue patients: a useful marker for serodiagnosis of dengue virus infection. Clin Vaccine Immunol 12:1235–1237. https://doi.org/10.1128/CDLI.12.10.1235-1237.2005

    Article  CAS  Google Scholar 

  54. Kramer MS, Naimark LE, Roberts RB, McDougall A, Leduc DG (1991) Risks and benefits of paracetamol antipyresis in young children with fever of presumed viral origin. Lancet 337:591–594. https://doi.org/10.1016/0140-6736(91)91648-E

    Article  CAS  PubMed  Google Scholar 

  55. Soni A, Chugh K, Sachdev A, Gupta D (2001) Management of dengue fever in ICU. Indian J Pediatr 68:1051–1055. https://doi.org/10.1007/BF02722356

    Article  CAS  PubMed  Google Scholar 

  56. Ngo TN, Cao XTP, Rachel K, Bridget W, Nguyen VM, Nguyen TQP et al (2001) Acute management of dengue shock syndrome: a randomized double-blind comparison of 4 intravenous fluid regimens in the first hour. Clin Infect Dis 32:204–213. https://doi.org/10.1086/318479.4

    Article  CAS  PubMed  Google Scholar 

  57. Damonte EB, Matulewicz MC, Cerezo AS (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 11:2399–2419

    Article  CAS  PubMed  Google Scholar 

  58. Crance JM, Scaramozzino N, Jouan A, Garin D (2003) Interferon, ribavirin, 6-azauridine and glycyrrhizin: antiviral compounds active against pathogenic flaviviruses. Antivir Res 58:73–79. https://doi.org/10.1016/S0166-3542(02)00185-7

    Article  CAS  PubMed  Google Scholar 

  59. Zheng Y, Yen-LC WS, Qing-YW FG, Jeyaraj D et al (2009) An adenosine nucleoside inhibitor of dengue virus. Proc Natl Acad Sci USA 106:20435–20439. https://doi.org/10.1073/pnas.0907010106

    Article  Google Scholar 

  60. Simons M, Raposo G (2009) Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581. https://doi.org/10.1016/j.ceb.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  61. Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215. https://doi.org/10.1016/0092-8674(80)90128-2

    Article  CAS  PubMed  Google Scholar 

  62. Balch WE, Dunphy WG, Braell WA, Rothman JE (1984) Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39:405–416. https://doi.org/10.1016/0092-8674(84)90019-9

    Article  CAS  PubMed  Google Scholar 

  63. Harding C, Heuser J, Stahl P (1984) Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol 35:256–263

    CAS  PubMed  Google Scholar 

  64. Subra C, Laulagnier K, Perret B, Record M (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89:205–212. https://doi.org/10.1016/j.biochi.2006.10.014

    Article  CAS  PubMed  Google Scholar 

  65. Choi DS, Kim DK, Kim YK, Gho YS (2013) Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 13:1554–1571

    Article  CAS  PubMed  Google Scholar 

  66. Alicia L, Tore S, Tuulia S, Dimple K, Tomasz R, Adam O et al (2013) Molecular lipidomics of exosomes released by Pc-3 prostate cancer cells. Biochim Biophys Acta 1831:1302–1309. https://doi.org/10.1016/j.bbalip.2013.04.011

    Article  CAS  Google Scholar 

  67. Batagov AO, Kurochkin IV (2013) Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 31-untranslated regions. Biol Direct. https://doi.org/10.1186/1745-6150-8-12

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nolte-’t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, ’t Hoen PA (2012) Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 40:9272–9285. https://doi.org/10.1093/nar/gks658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  PubMed  Google Scholar 

  70. Lucia V, Sangsoon W, Sean H, Claire L, Lamar B, Renan PS et al (2014) Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 42:7290–7304. https://doi.org/10.1093/nar/gku347

    Article  CAS  Google Scholar 

  71. Jean ME, Monique JK, Willem S, Janice MG, Osamu Y, Hans JG et al (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273:20121–20127. https://doi.org/10.1074/jbc.273.32.20121

    Article  Google Scholar 

  72. Clotilde T, Armelle R, Jérôme G, Joseph W, Laurence Z, Paola RC et al (1999) Molecular characterization of dendritic cell-derived exosomes: selective accumulation of the heat shock protein hsc73. J Cell Biol 147:599–610. https://doi.org/10.1083/jcb.147.3.599

    Article  Google Scholar 

  73. Richard W, Rachel SL, Peter TMV, Guenter S, Wiebke M, Joerg H et al (2003) Proteomic and biochemical analyses of human B cell-derived exosomes: potential implications for their function and multivesicular body formation. J Biol Chem 278:10963–10972. https://doi.org/10.1074/jbc.M207550200

    Article  CAS  Google Scholar 

  74. Danny FD, Pauline M, Marcel BHJV, Wim V, Rik JS, Chris JLMM et al (2000) Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J Immunol 165:663–670. https://doi.org/10.4049/jimmunol.165.2.663

    Article  Google Scholar 

  75. Yi F, Ning W, Xin G, Wanhua Y, James CM, Stephen JG (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5:e158. https://doi.org/10.1371/journal.pbio.0050158

    Article  CAS  Google Scholar 

  76. Ikeda M, Longnecker R (2007) Cholesterol is critical for Epstein-Barr virus latent membrane protein 2A trafficking and protein stability. Virology 360:461–468. https://doi.org/10.1016/j.virol.2006.10.046

    Article  CAS  PubMed  Google Scholar 

  77. Metka L, Gerard C, Maofu L, Tomaz V, Koen B, Yifan C et al (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11:110–122. https://doi.org/10.1111/j.1600-0854.2009.01006.x

    Article  CAS  Google Scholar 

  78. Aarthi N, Sergey I, Ravi D, RacheAl VD, Steven S, Elizabeth J et al (2013) Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem 288:20014–20033. https://doi.org/10.1074/jbc.M112.438895

    Article  CAS  Google Scholar 

  79. Sébastien P, Mihaela Z, Friedrich AG, Minchen C, James JR, Jingyue J et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    Article  Google Scholar 

  80. Schorey JS, Cheng Y, Singh PP, Smith VL (2015) Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 16:24–43. https://doi.org/10.15252/embr.201439363

    Article  CAS  PubMed  Google Scholar 

  81. Ting W, Linden AG, Samir KG, Chul K, Liang W, Sharilyn A et al (2014) Transfer of intracellular HIV Nef to endothelium causes endothelial dysfunction. PLoS ONE 9:e91063

    Article  Google Scholar 

  82. Minciacchi VR, Freeman MR, Di VD (2015) Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 40:41–51. https://doi.org/10.1016/j.semcdb.2015.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A et al (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20:131–139. https://doi.org/10.1016/j.devcel.2010.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Record M (2014) Intercellular communication by exosomes in placenta: a possible role in cell fusion? Placenta 35:297–302. https://doi.org/10.1016/j.placenta.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  85. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21:77–91. https://doi.org/10.1016/j.devcel.2011.05.015

    Article  CAS  PubMed  Google Scholar 

  86. Hurley JH (2015) ESCRTs are everywhere. EMBO J 34:2398–407. https://doi.org/10.15252/embj.201592484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Villarroya BC, Baixauli F, Gutierrez VC, Sanchez MF, Mittelbrunn M (2014) Sorting it out: regulation of exosome loading. Semin Cancer Biol 28:3–13. https://doi.org/10.1016/j.semcancer.2014.04.009

    Article  CAS  Google Scholar 

  88. Airola MV, Hannun YA (2013) Sphingolipid metabolism and neutral sphingomyelinases. Handb Exp Pharmacol 215:57–76. https://doi.org/10.1007/978-3-7091-1368-4_3

    Article  CAS  Google Scholar 

  89. Castro BM, Prieto M, Silva LC (2014) Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res 54:53–67. https://doi.org/10.1016/j.plipres.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  90. Perez HD, Gutierrez VC, Jorge I, Lopez MS, Ursa A, Sanchez MF et al (2013) The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem 288:11649–11661. https://doi.org/10.1074/jbc.m112.445304

    Article  Google Scholar 

  91. Mariantonia L, Angelo DM, Luana L, Martina B, Luana C, Massimo S et al (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS ONE 4:e5219. https://doi.org/10.1371/journal.pone.0005219

    Article  CAS  Google Scholar 

  92. Yoshioka Y, Konishi Y, Kosaka N, Katsuda T, Kato T, Ochiya T (2013) Comparative marker analysis of extracellular vesicles in different human cancer types. J Extracell Vesicles. https://doi.org/10.3402/jev.v2i0.20424

    Article  PubMed  PubMed Central  Google Scholar 

  93. Martin WW, David R, Simone S, Christoph S, Yolanda M, Eva H et al (2012) Soluble serum CD81 is elevated in patients with chronic hepatitis C and correlates with alanine aminotransferase serum activity. PLoS ONE 7:e30796. https://doi.org/10.1371/journal.pone.0030796

    Article  CAS  Google Scholar 

  94. Héctor P, Maša A, Simon L, Irina M, Bruno CS, Gema MB et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891. https://doi.org/10.1038/nm.2753

    Article  CAS  Google Scholar 

  95. Johan S, Tom W, Sjoerd VR, Dimphna HM, Laura G, William TC et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. https://doi.org/10.1038/ncb1800

    Article  CAS  Google Scholar 

  96. Salma K, Jessica MSJ, Malyn MAV, David T, Jonathan RA, Arjun A et al (2012) Plasma derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS ONE 7:e46737. https://doi.org/10.1371/journal.pone.0046737

    Article  CAS  Google Scholar 

  97. Giuseppe DN, Lucia P, Andrea Z, Annalisa R, Luigi C, Doris R (2013) C-src enriched serum microvesicles are generated in malignant plasma cell dyscrasias. PLoS ONE 8:e70811. https://doi.org/10.1371/journal.pone.0070811

    Article  CAS  Google Scholar 

  98. Zhou H, Pisitkun T, Aponte A, Yuen PST, Hoffert JD, Yasuda H et al (2006) Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int 70:1847–1857. https://doi.org/10.1038/sj.ki.5001874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hua Z, Anita C, Xuzhen H, Takayuki M, Noriyuki H, Monique EC et al (2008) Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney Int 74:613–621. https://doi.org/10.1038/ki.2008.206

    Article  CAS  Google Scholar 

  100. Javier CV, Eva RS, Esperanza G, Agustin B, David G, Nieves E et al (2010) Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples. Proteomics Clin Appl 4:416–425. https://doi.org/10.1002/prca.200900103

    Article  CAS  Google Scholar 

  101. Patricia AG, Trairak P, Jason DH, Dmitry T, Robert AS, Robert K et al (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. JASN 20:363–379. https://doi.org/10.1681/ASN.2008040406

    Article  CAS  Google Scholar 

  102. Smalley DM, Sheman NE, Nelson K, Theodorescu D (2008) Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. J Proteome Res 7:2088–2096. https://doi.org/10.1021/pr700775x

    Article  CAS  PubMed  Google Scholar 

  103. Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva NL, Breakefield XO et al (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. BJC 100:1603–1607. https://doi.org/10.1038/sj.bjc.6605058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sascha K, Anne-KK FM, Steffen R, Silke W, Dominique K et al (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278:73–81. https://doi.org/10.1016/j.canlet.2008.12.028

    Article  CAS  Google Scholar 

  105. Jianghong L, Cheryl ASB, Miyun TT, Robert EB, Richard BR, Patrice JM (2009) Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer. https://doi.org/10.1186/1471-2407-9-244

    Article  Google Scholar 

  106. Hadi V, Karin E, Apostolos B, Margareta S, James JL, Jan OL (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596

    Article  CAS  Google Scholar 

  107. Melissa PH, Noura I, Xiaoli Z, Baltazar DA, Eun JL, Lianbo Y et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3:e3694. https://doi.org/10.1371/journal.pone.0003694

    Article  CAS  Google Scholar 

  108. Taylor DD, Gercel TC (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21. https://doi.org/10.1016/j.ygyno.2008.04.033

    Article  CAS  PubMed  Google Scholar 

  109. Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46. https://doi.org/10.3816/CLC.2009.n.006

    Article  CAS  PubMed  Google Scholar 

  110. Silva J, García V, Zaballos A, Provencio M, Lombardía L, Almonacid L et al (2011) Vesicle-related microRNAs in plasma of non-small cell lung cancer patients and correlation with survival. Euro Respir J 37:617–623

    Article  CAS  Google Scholar 

  111. Patrick SM, Rachael KP, Evan MK, Brian RF, Stacia KW, Era LPA et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. PNAS 105:10513–10518. https://doi.org/10.1073/pnas.0804549105

    Article  Google Scholar 

  112. Jan CB, Marc J, Thorsten S, Maria F, Alexander H, Thomas S et al (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128:608–616. https://doi.org/10.1002/ijc.25376

    Article  CAS  Google Scholar 

  113. Tanaka Y, Kamohara H, Kinoshita K, Junji K, Takatsugu I, Masaaki I et al (2013) Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 119:1159–1167. https://doi.org/10.1002/cncr.27895

    Article  CAS  PubMed  Google Scholar 

  114. Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y et al (2013) Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma”. Br J Cancer 108:644–652. https://doi.org/10.1038/bjc.2013.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Corcoran C, Friel AM, Duffy MJ, Crown J, Driscoll LO (2011) Intracellular and extracellular microRNAs in breast cancer. Clin Chem 57:18–32. https://doi.org/10.1373/clinchem.2010.150730

    Article  CAS  PubMed  Google Scholar 

  116. Jian FC, Elizabeth MM, Michael TJ, Qiulian W, Thomas EC, Scott MH et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233. https://doi.org/10.1038/ng1725

    Article  CAS  Google Scholar 

  117. Yasuhide K, Koh O, Takahiro H, Hitoo N, Kazuya N, Minako K et al (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4:446–454. https://doi.org/10.1161/CIRCGENETICS.110.958975

    Article  Google Scholar 

  118. Keiichi O, Kanako I, Akemi F, Keiichi H, Kaori K, Yuko W et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS ONE 5:e13247. https://doi.org/10.1371/journal.pone.0013247

    Article  CAS  Google Scholar 

  119. Bok SH, Ji HC, Hyunjung K, Eun JC, Sangchul R, Jongmin K et al (2009) Colorectal cancer cell derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics. https://doi.org/10.1186/1471-2164-10-556

    Article  Google Scholar 

  120. Lin LL, Yu HC, Hai FN, Min X, Dan L, Hong L et al (2013) MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol 305:F1220–F1227. https://doi.org/10.1152/ajprenal.00148.2013

    Article  CAS  Google Scholar 

  121. Lin LL, Yu HC, Ming MP, Hong L, Ning TR, Kun LM et al (2014) CD2APmRNA in urinary exosome as biomarker of kidney disease. Clin Chim Acta 428:26–31. https://doi.org/10.1016/j.cca.2013.10.003

    Article  CAS  Google Scholar 

  122. Chang L, Yong K, David C, Nadine S, Guido E, David E et al (2013) Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem 288:26888–26897. https://doi.org/10.1074/jbc.M113.452458

    Article  CAS  Google Scholar 

  123. Keller S, Rupp C, Stoeck A, Runz S, Fogel M, Lugert S et al (2007) CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int 72:1095–1102. https://doi.org/10.1038/sj.ki.5002486

    Article  CAS  PubMed  Google Scholar 

  124. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848. https://doi.org/10.1038/ki.2010.278

    Article  CAS  PubMed  Google Scholar 

  125. Nazimek K, Bryniarski K, Santocki M, Ptak W (2015) Exosomes as mediators of intercellular communication: clinical implications. Pol Arch Med Wewn 125:370–80. https://doi.org/10.20452/pamw.2840

    Article  PubMed  Google Scholar 

  126. Simons M, Raposo G (2009) Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581. https://doi.org/10.1016/j.ceb.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  127. Tian T, Wang Y, Wang H, Zhu Z, Xiao Z (2010) Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem 111:488–496. https://doi.org/10.1002/jcb.22733

    Article  CAS  PubMed  Google Scholar 

  128. Khalyfa A, Gozal D (2014) Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. J Transl Med. https://doi.org/10.1186/1479-5876-12-162

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zhang H, Xie Y, Li W, Chibbar R, Xiong S, Xiang J (2011) CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell Mol Immunol 8:23–30. https://doi.org/10.1038/cmi.2010.59

    Article  CAS  PubMed  Google Scholar 

  130. Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T et al (2014) MicroRNA-containing T-regulatory cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity 41:89–103. https://doi.org/10.1016/j.immuni.2014.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R et al (2013) CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol 43:2430–2440. https://doi.org/10.1002/eji.201242909

    Article  CAS  PubMed  Google Scholar 

  132. Clayton A, Al TS, Webber J, Mason MD, Tabi Z (2011) Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 187:676–683. https://doi.org/10.4049/jimmunol.1003884

    Article  CAS  PubMed  Google Scholar 

  133. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172. https://doi.org/10.1084/jem.183.3.1161

    Article  CAS  PubMed  Google Scholar 

  134. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600. https://doi.org/10.1038/nm0598-594

    Article  CAS  PubMed  Google Scholar 

  135. Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX (2017) Exosomes derived from mesenchymal stem cells rescue myocardial ischemia/reperfusion injury by inducing cardio myocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem 43:52–68. https://doi.org/10.1159/000480317

    Article  CAS  PubMed  Google Scholar 

  136. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222. https://doi.org/10.1016/j.scr.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  137. Cui X, He Z, Liang Z, Chen Z, Wang H, Zhang J (2017) Exosomes from adipose derived mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through wnt/beta-catenin signaling pathway. J Cardiovasc Pharmacol 70:225–231. https://doi.org/10.1097/FJC.0000000000000507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang B, Wang M, Gong A, Zhang X, Wu X, Zhu Y et al (2015) HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 33:2158–2168. https://doi.org/10.1002/stem.1771

    Article  CAS  PubMed  Google Scholar 

  139. Van KA, Joles JA, Van BBW, Lim SK, Kleijn D, Giles RH et al (2012) Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLoS ONE 7:e38746. https://doi.org/10.1371/journal.pone.0038746

    Article  CAS  Google Scholar 

  140. Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK (2014) Mesenchymal stem cell derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. https://doi.org/10.1186/scrt465

    Article  PubMed  PubMed Central  Google Scholar 

  141. Jiang W, Tan Y, Cai M, Zhao T, Mao F (2018) Human umbilical cord MSC derived exosomes suppress the development of CCl4-induced liver injury through antioxidant effect. Stem Cells Int. https://doi.org/10.1155/2018/6079642

    Article  PubMed  PubMed Central  Google Scholar 

  142. Willis GR, Mitsialis SA, Kourembanas S (2018) Good things come in small packages: application of exosome-based therapeutics in neonatal lung injury. Pediatr Res 83:298–307. https://doi.org/10.1038/pr.2017.256

    Article  CAS  PubMed  Google Scholar 

  143. Mead B, Tomarev S (2017) Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med 6:1273–1285. https://doi.org/10.1002/sctm.16-0428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yu B, Shao H, Su C, Jiang Y, Chen X, Bai L et al (2016) Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci Rep. https://doi.org/10.1038/srep34562

    Article  PubMed  PubMed Central  Google Scholar 

  145. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X et al (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30:1556–1564. https://doi.org/10.1002/stem.1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zoller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9:40–55. https://doi.org/10.1038/nrc2543

    Article  CAS  PubMed  Google Scholar 

  147. Hina K, Christopher GA, Michael L, Ching SA, Adam M, Richard JS et al (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13:3354–3364. https://doi.org/10.1002/pmic.201300282

    Article  CAS  Google Scholar 

  148. Gheinani AH, Vögeli M, Baumgartner U, Erik V, Annette D, Fiona CB et al (2018) Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci Rep. https://doi.org/10.1038/s41598-018-22142-x

    Article  PubMed  PubMed Central  Google Scholar 

  149. Zlotogorski HA, Dayan D, Chaushu G, Korvala J, Salo T, Sormunen R et al (2015) Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem 63:181–189. https://doi.org/10.1369/0022155414564219

    Article  CAS  Google Scholar 

  150. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P et al (2011) Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 7:780–788. https://doi.org/10.1016/j.nano.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  151. Necochea CR, Gonda A, Kabagwira J, Mirshahidi S, Cao H, Reeves ME et al (2018) A practical approach to extracellular vesicle characterization among similar biological samples. Biomed Phys Eng Express. https://doi.org/10.1088/2057-1976/aad6d8

    Article  Google Scholar 

  152. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  153. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zaborowski MP, Balaj L, Breakefield XO, Lai CP (2015) Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience 65:783–797. https://doi.org/10.1093/biosci/biv084

    Article  PubMed  PubMed Central  Google Scholar 

  155. Pospichalova V, Svoboda J, Dave Z, Kotrbova A, Kaiser K, Klemova D et al (2015) Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles. https://doi.org/10.3402/jev.v4.25530

    Article  PubMed  PubMed Central  Google Scholar 

  156. Szatanek R, Baj KM, Zimoch J, Lekka M, Siedlar M, Baran J (2017) The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci 18:1153. https://doi.org/10.3390/ijms18061153

    Article  CAS  PubMed Central  Google Scholar 

  157. Els JVD, Esther NMNH, Willem S, Ger JAA, Marca HMW (2012) Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc 7:1311–1326. https://doi.org/10.1038/nprot.2012.065

    Article  CAS  Google Scholar 

  158. Erdbrugger U, Rudy CK, Etter ME, Dryden KA, Yeager M, Klibanov AL et al (2014) Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytom A 85:756–770. https://doi.org/10.1002/cyto.a.22494

    Article  CAS  Google Scholar 

  159. Chandler WL, Yeung W, Tait JF (2011) A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. J Thromb Haemost 9:1216–1224. https://doi.org/10.1111/j.1538-7836.2011.04283.x

    Article  CAS  PubMed  Google Scholar 

  160. Orozco AF, Lewis DE (2010) Flow cytometric analysis of circulating microparticles in plasma. Cytom A 77:502–514. https://doi.org/10.1002/cyto.a.20886

    Article  CAS  Google Scholar 

  161. Braicu C, Tomuleasa C, Monroig P, Cucuianu A, Neagoe IB, Calin GA et al (2015) Exosomes as divine messengers: are they the Hermes of modern molecular oncology? Cell Death Differ 22:34–45. https://doi.org/10.1038/cdd.2014.130

    Article  CAS  PubMed  Google Scholar 

  162. Kalani A, Tyagi A, Tyagi N (2014) Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol 49:590–600. https://doi.org/10.1007/s12035-013-8544-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.R. thankful to Sir Ganga Ram Hospital, Delhi, India for providing the necessary support.

Author information

Authors and Affiliations

Authors

Contributions

Dr. RR and Prof. NKG contributed to the concept. Dr. RR, Mr. RK and Dr. DK wrote the manuscript. Dr. RR and Dr. AS edited the Manusript. The final version of the manuscript was read and approved by all authors.

Corresponding author

Correspondence to Rashmi Rana.

Ethics declarations

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, R., Kant, R., Kaul, D. et al. Integrated view of molecular diagnosis and prognosis of dengue viral infection: future prospect of exosomes biomarkers. Mol Cell Biochem 477, 815–832 (2022). https://doi.org/10.1007/s11010-021-04326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04326-8

Keywords

Navigation