Skip to main content
Log in

Extra-nuclear histones: origin, significance and perspectives

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Histones are classically known to organize the eukaryotic DNA into chromatin. They are one of the key players in regulating transcriptionally permissive and non-permissive states of the chromatin. Nevertheless, their context-dependent appearance within the cytoplasm and systemic circulation has also been observed. The past decade has also witnessed few scientific communications on the existence of vesicle-associated histones. Diverse groups have attempted to determine the significance of these extra-nuclear histones so far, with many of those studies still underway. Of note amongst these are interactions of extra-nuclear or free histones with cellular membranes, mediated by mutual cationic and anionic natures, respectively. It is here aimed to consolidate the mechanism of formation of extra-nuclear histones; implications of histone-induced membrane destabilization and explore the mechanisms of their association/release with extracellular vesicles, along with the functional aspects of these extra-nuclear histones in cell and systemic physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ouzounis CA, Kyrpides NC (1996) Parallel origins of the nucleosome core and eukaryotic transcription from Archaea. J Mol Evol 42:234–239

    Article  CAS  PubMed  Google Scholar 

  2. Maze I, Noh K-M, Soshnev AA, Allis CD (2014) Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet 15:259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kamakaka RT, Biggins S (2005) Histone variants: deviants? Genes Dev 19:295–316

    Article  CAS  PubMed  Google Scholar 

  4. Thomas JO, Kornberg RD (1975) An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci 72:2626–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Parseghian MH, Luhrs KA (2006) Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. Biochem Cell Biol 84:589–595

    Article  CAS  PubMed  Google Scholar 

  6. Zlatanova J, Srebreva L, Banchev T, Tasheva B, Tsanev R (1990) Cytoplasmic pool of histone H1 in mammalian cells. J Cell Sci 96:461–468

    Article  CAS  PubMed  Google Scholar 

  7. Kawai C, Kotani H, Miyao M, Ishida T, Jemail L, Abiru H, Tamaki K (2016) Circulating extracellular histones are clinically relevant mediators of multiple organ injury. Am J Pathol 186:829–843

    Article  CAS  PubMed  Google Scholar 

  8. Muthukrishnan U (2018) The release of histone proteins from cells via extracellular vesicles. Umeå University

  9. Hattangadi SM, Martinez-Morilla S, Patterson HC, Shi J, Burke K, Avila-Figueroa A, Venkatesan S, Wang J, Paulsen K, Görlich D (2014) Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation. Blood 124:1931–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Domingo-Espin J (2013) Development and characterization of artificial viruses for gene therapy. Universitat Autònoma de Barcelona

  11. Hariton-Gazal E, Rosenbluh J, Graessmann A, Gilon C, Loyter A (2003) Direct translocation of histone molecules across cell membranes. J Cell Sci 116:4577–4586

    Article  CAS  PubMed  Google Scholar 

  12. Balicki D, Reisfeld RA, Pertl U, Beutler E, Lode HN (2000) Histone H2A-mediated transient cytokine gene delivery induces efficient antitumor responses in murine neuroblastoma. Proc Natl Acad Sci 97:11500–11504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fritz JD, Herweijer H, Zhang G, Wolff JA (1996) Gene transfer into mammalian cells using histone-condensed plasmid DNA. Hum Gene Ther 7:1395–1404

    Article  CAS  PubMed  Google Scholar 

  14. Kobiyama K, Takeshita F, Jounai N, Sakaue-Sawano A, Miyawaki A, Ishii KJ, Kawai T, Sasaki S, Hirano H, Ishii N (2010) Extrachromosomal histone H2B mediates innate antiviral immune responses induced by intracellular double-stranded DNA. J Virol 84:822–832

    Article  CAS  PubMed  Google Scholar 

  15. Zanin MK, Donohue JM, Everitt BA (2010) Evidence that core histone H3 is targeted to the mitochondria in Brassica oleracea. Cell Biol Int 34:997–1003. https://doi.org/10.1042/CBI20090281

    Article  CAS  PubMed  Google Scholar 

  16. Choi YS, Hoon Jeong J, Min HK, Jung HJ, Hwang D, Lee SW, Kim Pak Y (2011) Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: identification of mitochondrial histones. Mol Biosyst 7:1523–1536. https://doi.org/10.1039/c0mb00277a

    Article  CAS  PubMed  Google Scholar 

  17. Cascone A, Bruelle C, Lindholm D, Bernardi P, Eriksson O (2012) Destabilization of the outer and inner mitochondrial membranes by core and linker histones. PLoS ONE 7:e35357. https://doi.org/10.1371/journal.pone.0035357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okamura H, Yoshida K, Amorim BR, Haneji T (2008) Histone H1.2 is translocated to mitochondria and associates with Bak in bleomycin-induced apoptotic cells. J Cell Biochem 103:1488–1496. https://doi.org/10.1002/jcb.21537

    Article  CAS  PubMed  Google Scholar 

  19. Garg M, Perumalsamy LR, Shivashankar GV, Sarin A (2014) The linker histone h1.2 is an intermediate in the apoptotic response to cytokine deprivation in T-effectors. Int J Cell Biol 2014:674753. https://doi.org/10.1155/2014/674753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morillo-Huesca M, Maya D, Muñoz-Centeno MC, Singh RK, Oreal V, Reddy GU, Liang D, Géli V, Gunjan A, Chávez S (2010) FACT prevents the accumulation of free histones evicted from transcribed chromatin and a subsequent cell cycle delay in G1. PLoS Genet 6:e1000964

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wente SR, Rout MP (2010) The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2:a000562. https://doi.org/10.1101/cshperspect.a000562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Venkatesan S, Hattangadi SM (2013) Histones to the cytosol: role of nuclear protein export in erythroid nuclear condensation. Blood 122:310

    Article  Google Scholar 

  23. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ivanov A, Pawlikowski J, Manoharan I, van Tuyn J, Nelson DM, Rai TS, Shah PP, Hewitt G, Korolchuk VI, Passos JF, Wu H, Berger SL, Adams PD (2013) Lysosome-mediated processing of chromatin in senescence. J Cell Biol 202:129–143. https://doi.org/10.1083/jcb.201212110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ivanov A, Pawlikowski J, Manoharan I, van Tuyn J, Nelson DM, Rai TS, Shah PP, Hewitt G, Korolchuk VI, Passos JF (2013) Lysosome-mediated processing of chromatin in senescence. J Cell Biol 202:129–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bell ES, Lammerding J (2016) Causes and consequences of nuclear envelope alterations in tumour progression. Eur J Cell Biol 95:449–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dou Z, Xu C, Donahue G, Shimi T, Pan J-A, Zhu J, Ivanov A, Capell BC, Drake AM, Shah PP (2015) Autophagy mediates degradation of nuclear lamina. Nature 527:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Belov GA, Lidsky PV, Mikitas OV, Egger D, Lukyanov KA, Bienz K, Agol VI (2004) Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores. J Virol 78:10166–10177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Winkler DD, Luger K (2011) The histone chaperone FACT: structural insights and mechanisms for nucleosome reorganization. J Biol Chem 286:18369–18374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi Y-S, Jeong JH, Min H-K, Jung H-J, Hwang D, Lee S-W, Pak YK (2011) Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: identification of mitochondrial histones. Mol BioSyst 7:1523–1536

    Article  CAS  PubMed  Google Scholar 

  31. Garg M, Perumalsamy LR, Shivashankar G, Sarin A (2014) The linker histone h12 is an intermediate in the apoptotic response to cytokine deprivation in T-effectors. Int J Cell Biol 2014:674753

    Article  PubMed  PubMed Central  Google Scholar 

  32. Han M-J, Koc EC, Koc H (2014) Post-translational modification and mitochondrial relocalization of histone H3 during apoptosis induced by staurosporine. Biochem Biophys Res Commun 450:802–807

    Article  CAS  PubMed  Google Scholar 

  33. Okamura H, Yoshida K, Amorim BR, Haneji T (2008) Histone H1. 2 is translocated to mitochondria and associates with bak in bleomycin-induced apoptotic cells. J Cell Biochem 103:1488–1496

    Article  CAS  PubMed  Google Scholar 

  34. Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39:407–427

    Article  CAS  PubMed  Google Scholar 

  35. Ingólfsson HI, Melo MN, Van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, De Vries AH, Tieleman DP, Marrink SJ (2014) Lipid organization of the plasma membrane. J Am Chem Soc 136:14554–14559

    Article  PubMed  Google Scholar 

  36. Furnrohr BG, Groer GJ, Sehnert B, Herrmann M, Voll RE (2007) Interaction of histones with phospholipids–implications for the exposure of histones on apoptotic cells. Autoimmunity 40:322–326. https://doi.org/10.1080/08916930701356457

    Article  CAS  PubMed  Google Scholar 

  37. Quemeneur F, Rinaudo M, Pepin-Donat B (2008) Influence of polyelectrolyte chemical structure on their interaction with lipid membrane of zwitterionic liposomes. Biomacromol 9:2237–2243. https://doi.org/10.1021/bm800400y

    Article  CAS  Google Scholar 

  38. Goldberg EM, Borchardt DB, Zidovetzki R (1998) Effects of histone and diolein on the structure of phosphatidylcholine/phosphatidylserine or phosphatidylcholine/phosphatidylglycerol bilayers. Eur J Biochem 258:722–728

    Article  CAS  PubMed  Google Scholar 

  39. Tsai HH, Lai WX, Lin HD, Lee JB, Juang WF, Tseng WH (2012) Molecular dynamics simulation of cation-phospholipid clustering in phospholipid bilayers: possible role in stalk formation during membrane fusion. Biochim Biophys Acta 1818:2742–2755. https://doi.org/10.1016/j.bbamem.2012.05.029

    Article  CAS  PubMed  Google Scholar 

  40. Mecke A, Majoros IJ, Patri AK, Baker JR Jr, Banaszak Holl MM, Orr BG (2005) Lipid bilayer disruption by polycationic polymers: the roles of size and chemical functional group. Langmuir 21:10348–10354

    Article  CAS  PubMed  Google Scholar 

  41. Secko D (2003) Histone released on cell death charges. Genome Biol 4:20030922–20031001

    Article  Google Scholar 

  42. Ito T, Nakahara M, Masuda Y, Ono S, Yamada S, Ishikura H, Imaizumi H, Kamikokuryo C, Kakihana Y, Maruyama I (2018) Circulating histone H3 levels are increased in septic mice in a neutrophil-dependent manner: preclinical evaluation of a novel sandwich ELISA for histone H3. J Intensive Care 6:79. https://doi.org/10.1186/s40560-018-0348-y

    Article  PubMed  PubMed Central  Google Scholar 

  43. Allam R, Darisipudi MN, Tschopp J, Anders HJ (2013) Histones trigger sterile inflammation by activating the NLRP3 inflammasome. Eur J Immunol 43:3336–3342. https://doi.org/10.1002/eji.201243224

    Article  CAS  PubMed  Google Scholar 

  44. Kang R, Zhang Q, Hou W, Yan Z, Chen R, Bonaroti J, Bansal P, Billiar TR, Tsung A, Wang Q, Bartlett DL, Whitcomb DC, Chang EB, Zhu X, Wang H, Lu B, Tracey KJ, Cao L, Fan XG, Lotze MT, Zeh HJ III, Tang D (2014) Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology 146:1097–1107. https://doi.org/10.1053/j.gastro.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  45. Chen R, Kang R, Fan X, Tang D (2014) Release and activity of histone in diseases. Cell Death Dis 5:e1370–e1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA 107:9813–9818. https://doi.org/10.1073/pnas.0909927107

    Article  PubMed  PubMed Central  Google Scholar 

  47. Monach PA, Hueber W, Kessler B, Tomooka BH, BenBarak M, Simmons BP, Wright J, Thornhill TS, Monestier M, Ploegh H, Robinson WH, Mathis D, Benoist C (2009) A broad screen for targets of immune complexes decorating arthritic joints highlights deposition of nucleosomes in rheumatoid arthritis. Proc Natl Acad Sci USA 106:15867–15872. https://doi.org/10.1073/pnas.0908032106

    Article  PubMed  PubMed Central  Google Scholar 

  48. De Meyer SF, Suidan GL, Fuchs TA, Monestier M, Wagner DD (2012) Extracellular chromatin is an important mediator of ischemic stroke in mice. Arterioscler Thromb Vasc Biol 32:1884–1891. https://doi.org/10.1161/ATVBAHA.112.250993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gilthorpe JD, Oozeer F, Nash J, Calvo M, Bennett DL, Lumsden A, Pini A (2013) Extracellular histone H1 is neurotoxic and drives a pro-inflammatory response in microglia. F1000Res 2:148. https://doi.org/10.12688/f1000research.2-148.v1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15. https://doi.org/10.1101/gad.1376506

    Article  CAS  PubMed  Google Scholar 

  51. Yipp BG, Kubes P (2013) NETosis: how vital is it? Blood 122:2784–2794. https://doi.org/10.1182/blood-2013-04-457671

    Article  CAS  PubMed  Google Scholar 

  52. Ajiro K (2000) Histone H2B phosphorylation in mammalian apoptotic cells. An association with DNA fragmentation. J Biol Chem 275:439–443

    Article  CAS  PubMed  Google Scholar 

  53. Waring P, Khan T, Sjaarda A (1997) Apoptosis induced by gliotoxin is preceded by phosphorylation of histone H3 and enhanced sensitivity of chromatin to nuclease digestion. J Biol Chem 272:17929–17936

    Article  CAS  PubMed  Google Scholar 

  54. Kratzmeier M, Albig W, Hanecke K, Doenecke D (2000) Rapid dephosphorylation of H1 histones after apoptosis induction. J Biol Chem 275:30478–30486. https://doi.org/10.1074/jbc.M003956200

    Article  CAS  PubMed  Google Scholar 

  55. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM (2000) Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 275:9390–9395

    Article  CAS  PubMed  Google Scholar 

  56. Hengartner MO (2001) Apoptosis. DNA destroyers. Nature 412(27):29. https://doi.org/10.1038/35083663

    Article  Google Scholar 

  57. Wu D, Ingram A, Lahti JH, Mazza B, Grenet J, Kapoor A, Liu L, Kidd VJ, Tang D (2002) Apoptotic release of histones from nucleosomes. J Biol Chem 277:12001–12008. https://doi.org/10.1074/jbc.M109219200

    Article  CAS  PubMed  Google Scholar 

  58. Gabler C, Blank N, Hieronymus T, Schiller M, Berden JH, Kalden JR, Lorenz HM (2004) Extranuclear detection of histones and nucleosomes in activated human lymphoblasts as an early event in apoptosis. Ann Rheum Dis 63:1135–1144. https://doi.org/10.1136/ard.2003.011452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Nieuwenhuijze AE, van Lopik T, Smeenk RJ, Aarden LA (2003) Time between onset of apoptosis and release of nucleosomes from apoptotic cells: putative implications for systemic lupus erythematosus. Ann Rheum Dis 62:10–14

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhao H, Jaffer T, Eguchi S, Wang Z, Linkermann A, Ma D (2015) Role of necroptosis in the pathogenesis of solid organ injury. Cell Death Dis 6:e1975. https://doi.org/10.1038/cddis.2015.316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grasso S, Neumann A, Lang IM, Etscheid M, von Kockritz-Blickwede M, Kanse SM (2018) Interaction of factor VII activating protease (FSAP) with neutrophil extracellular traps (NETs). Thromb Res 161:36–42. https://doi.org/10.1016/j.thromres.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  62. Kumar SV, Kulkarni OP, Mulay SR, Darisipudi MN, Romoli S, Thomasova D, Scherbaum CR, Hohenstein B, Hugo C, Muller S, Liapis H, Anders HJ (2015) Neutrophil extracellular trap-related extracellular histones cause vascular necrosis in severe GN. J Am Soc Nephrol 26:2399–2413. https://doi.org/10.1681/ASN.2014070673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Collier DM, Villalba N, Sackheim A, Bonev AD, Miller ZD, Moore JS, Shui B, Lee JC, Lee FK, Reining S, Kotlikoff MI, Nelson MT, Freeman K (2019) Extracellular histones induce calcium signals in the endothelium of resistance-sized mesenteric arteries and cause loss of endothelium-dependent dilation. Am J Physiol Heart Circ Physiol 316:H1309–H1322. https://doi.org/10.1152/ajpheart.00655.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lemmens R, Larsson O, Berggren PO, Islam MS (2001) Ca2+-induced Ca2+ release from the endoplasmic reticulum amplifies the Ca2+ signal mediated by activation of voltage-gated L-type Ca2+ channels in pancreatic beta-cells. J Biol Chem 276:9971–9977. https://doi.org/10.1074/jbc.M009463200

    Article  CAS  PubMed  Google Scholar 

  65. Putney JW, Tomita T (2012) Phospholipase C signaling and calcium influx. Adv Biol Regul 52:152–164. https://doi.org/10.1016/j.advenzreg.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  66. Orrenius S, McCabe MJ Jr, Nicotera P (1992) Ca(2+)-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol Lett 64–65:357–364

    Article  Google Scholar 

  67. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Taylor FB, Esmon NL, Lupu F, Esmon CT (2009) Extracellular histones are major mediators of death in sepsis. Nat Med 15:1318–1321. https://doi.org/10.1038/nm.2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma Y, Poole K, Goyette J, Gaus K (2017) Introducing membrane charge and membrane potential to T cell signaling. Front Immunol 8:1513. https://doi.org/10.3389/fimmu.2017.01513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nagata S, Suzuki J, Segawa K, Fujii T (2016) Exposure of phosphatidylserine on the cell surface. Cell Death Differ 23:952–961. https://doi.org/10.1038/cdd.2016.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lentz BR (2003) Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog Lipid Res 42:423–438

    Article  CAS  PubMed  Google Scholar 

  71. Paolicelli RC, Bergamini G, Rajendran L (2018) Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience 405:148

    Article  PubMed  Google Scholar 

  72. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799

    Article  CAS  PubMed  Google Scholar 

  73. Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25:364–372. https://doi.org/10.1016/j.tcb.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  74. Caruso S, Poon IKH (2018) Apoptotic cell-derived extracellular vesicles: more than just debris. Front Immunol 9:1486. https://doi.org/10.3389/fimmu.2018.01486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Meehan B, Rak J, Di Vizio D (2016) Oncosomes - large and small: what are they, where they came from? J Extracell Vesicles 5:33109. https://doi.org/10.3402/jev.v5.33109

    Article  PubMed  Google Scholar 

  76. Rizzoli SO (2014) Synaptic vesicle recycling: steps and principles. EMBO J 33:788–822. https://doi.org/10.1002/embj.201386357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park JJ, Loh YP (2008) How peptide hormone vesicles are transported to the secretion site for exocytosis. Mol Endocrinol 22:2583–2595. https://doi.org/10.1210/me.2008-0209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Blank U, Madera-Salcedo IK, Danelli L, Claver J, Tiwari N, Sanchez-Miranda E, Vazquez-Victorio G, Ramirez-Valadez KA, Macias-Silva M, Gonzalez-Espinosa C (2014) Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells. Front Immunol 5:453. https://doi.org/10.3389/fimmu.2014.00453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Burgoyne RD (1990) Secretory vesicle-associated proteins and their role in exocytosis. Annu Rev Physiol 52:647–659. https://doi.org/10.1146/annurev.ph.52.030190.003243

    Article  CAS  PubMed  Google Scholar 

  80. Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, Takasugi M, Watanabe S, Kanemaki MT, Obuse C, Hara E (2017) Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun 8:15287. https://doi.org/10.1038/ncomms15287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sheller S, Papaconstantinou J, Urrabaz-Garza R, Richardson L, Saade G, Salomon C, Menon R (2016) Amnion-epithelial-cell-derived exosomes demonstrate physiologic state of cell under oxidative stress. PLoS ONE 11:e0157614. https://doi.org/10.1371/journal.pone.0157614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nair RR, Mazza D, Brambilla F, Gorzanelli A, Agresti A, Bianchi ME (2018) LPS-challenged macrophages release microvesicles coated with histones. Front Immunol 9:1463. https://doi.org/10.3389/fimmu.2018.01463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–4099. https://doi.org/10.1002/pmic.200800109

    Article  CAS  PubMed  Google Scholar 

  84. Baig S, Kothandaraman N, Manikandan J, Rong L, Ee KH, Hill J, Lai CW, Tan WY, Yeoh F, Kale A, Su LL, Biswas A, Vasoo S, Choolani M (2014) Proteomic analysis of human placental syncytiotrophoblast microvesicles in preeclampsia. Clin Proteom 11:40. https://doi.org/10.1186/1559-0275-11-40

    Article  CAS  Google Scholar 

  85. Nagai A, Sato T, Akimoto N, Ito A, Sumida M (2005) Isolation and identification of histone H3 protein enriched in microvesicles secreted from cultured sebocytes. Endocrinology 146:2593–2601. https://doi.org/10.1210/en.2004-1478

    Article  CAS  PubMed  Google Scholar 

  86. Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chilamkurti N, Gangoda L, Mathivanan S (2016) ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 428:688–692. https://doi.org/10.1016/j.jmb.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  87. Pathan M, Fonseka P, Chitti SV, Kang T, Sanwlani R, Van Deun J, Hendrix A, Mathivanan S (2019) Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res 47:D516–D519. https://doi.org/10.1093/nar/gky1029

    Article  CAS  PubMed  Google Scholar 

  88. Kim DK, Kang B, Kim OY, Choi DS, Lee J, Kim SR, Go G, Yoon YJ, Kim JH, Jang SC, Park KS, Choi EJ, Kim KP, Desiderio DM, Kim YK, Lotvall J, Hwang D, Gho YS (2013) EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. https://doi.org/10.3402/jev.v2i0.20384

    Article  PubMed  PubMed Central  Google Scholar 

  89. Schiera G, Di Liegro CM, Saladino P, Pitti R, Savettieri G, Proia P, Di Liegro I (2013) Oligodendroglioma cells synthesize the differentiation-specific linker histone H1 and release it into the extracellular environment through shed vesicles. Int J Oncol 43:1771–1776. https://doi.org/10.3892/ijo.2013.2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nangami G, Koumangoye R, Shawn Goodwin J, Sakwe AM, Marshall D, Higginbotham J, Ochieng J (2014) Fetuin-A associates with histones intracellularly and shuttles them to exosomes to promote focal adhesion assembly resulting in rapid adhesion and spreading in breast carcinoma cells. Exp Cell Res 328:388–400. https://doi.org/10.1016/j.yexcr.2014.08.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Watson K, Koumangoye R, Thompson P, Sakwe AM, Patel T, Pratap S, Ochieng J (2012) Fetuin-A triggers the secretion of a novel set of exosomes in detached tumor cells that mediate their adhesion and spreading. FEBS Lett 586:3458–3463. https://doi.org/10.1016/j.febslet.2012.07.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nangami G, Koumangoye R, Goodwin JS, Sakwe AM, Marshall D, Higginbotham J, Ochieng J (2014) Fetuin-A associates with histones intracellularly and shuttles them to exosomes to promote focal adhesion assembly resulting in rapid adhesion and spreading in breast carcinoma cells. Exp Cell Res 328:388–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li T, Guo H, Song Y, Zhao X, Shi Y, Lu Y, Hu S, Nie Y, Fan D, Wu K (2014) Loss of vinculin and membrane-bound β-catenin promotes metastasis and predicts poor prognosis in colorectal cancer. Mol Cancer 13:1–15

    Article  CAS  Google Scholar 

  94. Panda PP, Bohot M, Chaturvedi MM, Purohit JS (2021) Purification and partial characterization of vinculin from chicken liver nuclear extract. Biologia 76:1349–1357

    Article  CAS  Google Scholar 

  95. Panda P, Chaturvedi MM, Panda AK, Suar M, Purohit JS (2013) Purification and characterization of a novel histone H2A specific protease (H2Asp) from chicken liver nuclear extract. Gene 512:47–54

    Article  CAS  PubMed  Google Scholar 

  96. Purohit JS, Tomar RS, Panigrahi AK, Pandey SM, Singh D, Chaturvedi MM (2013) Chicken liver glutamate dehydrogenase (GDH) demonstrates a histone H3 specific protease (H3ase) activity in vitro. Biochimie 95:1999–2009

    Article  CAS  PubMed  Google Scholar 

  97. Mandal P, Verma N, Chauhan S, Tomar RS (2013) Unexpected histone H3 tail-clipping activity of glutamate dehydrogenase. J Biol Chem 288:18743–18757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ochieng J, Nangami G, Sakwe A, Rana T, Ingram S, Goodwin JS, Moye C, Lammers P, Adunyah SE (2018) Extracellular histones are the ligands for the uptake of exosomes and hydroxyapatite-nanoparticles by tumor cells via syndecan-4. FEBS Lett 592:3274–3285. https://doi.org/10.1002/1873-3468.13236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R (2019) Reassessment of exosome composition. Cell 177:428–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen Y-D, Fang Y-T, Cheng Y-L, Lin C-F, Hsu L-J, Wang S-Y, Anderson R, Chang C-P, Lin Y-S (2017) Exophagy of annexin A2 via RAB11, RAB8A and RAB27A in IFN-γ-stimulated lung epithelial cells. Sci Rep 7:5676

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lemasters JJ, Qian T, He L, Kim J-S, Elmore SP, Cascio WE, Brenner DA (2002) Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 4:769–781

    Article  CAS  PubMed  Google Scholar 

  102. Ding W-X, Yin X-M (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393:547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Juhasz G (2016) A mitochondrial-derived vesicle HOPS to endolysosomes using Syntaxin-17. J Cell Biol 214:241–243. https://doi.org/10.1083/jcb.201607024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Berg TO, Fengsrud M, Strømhaug PE, Berg T, Seglen PO (1998) Isolation and characterization of rat liver amphisomes evidence for fusion of autophagosomes with both early and late endosoMES. J Biol Chem 273:21883–21892

    Article  CAS  PubMed  Google Scholar 

  105. Fader CM, Sanchez D, Furlan M, Colombo MI (2008) Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 9:230–250. https://doi.org/10.1111/j.1600-0854.2007.00677.x

    Article  CAS  PubMed  Google Scholar 

  106. Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P, Rachubinski RA, Andrade-Navarro MA, McBride HM (2008) Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol 18:102–108

    Article  CAS  PubMed  Google Scholar 

  107. Bonnington KE, Kuehn MJ (2014) Protein selection and export via outer membrane vesicles. Biochim Biophys Acta 1843:1612–1619. https://doi.org/10.1016/j.bbamcr.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  108. Yamashita A, Fujimoto M, Katayama K, Yamaoka S, Tsutsumi N, Arimura S-I (2016) Formation of mitochondrial outer membrane derived protrusions and vesicles in Arabidopsis thaliana. PLoS ONE 11:e0146717

    Article  PubMed  PubMed Central  Google Scholar 

  109. McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA (2014) Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33:282–295

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Soubannier V, McLelland G-L, Zunino R, Braschi E, Rippstein P, Fon EA, McBride HM (2012) A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol 22:135–141

    Article  CAS  PubMed  Google Scholar 

  111. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E (2012) Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14:677

    Article  CAS  PubMed  Google Scholar 

  112. Choi DS, Kim DK, Kim YK, Gho YS (2013) Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 13:1554–1571

    Article  CAS  PubMed  Google Scholar 

  113. Sugiura A, McLelland GL, Fon EA, McBride HM (2014) A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33:2142–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dhaenens M, Glibert P, Meert P, Vossaert L, Deforce D (2015) Histone proteolysis: a proposal for categorization into “clipping” and “degradation.” BioEssays 37:70–79. https://doi.org/10.1002/bies.201400118

    Article  CAS  PubMed  Google Scholar 

  115. Cadete VJ, Deschenes S, Cuillerier A, Brisebois F, Sugiura A, Vincent A, Turnbull D, Picard M, McBride HM, Burelle Y (2016) Formation of mitochondrial-derived vesicles is an active and physiologically relevant mitochondrial quality control process in the cardiac system. J Physiol 594:5343–5362. https://doi.org/10.1113/JP272703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schaefer L (2014) Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem 289:35237–35245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Alhamdi Y, Toh CH (2016) The role of extracellular histones in haematological disorders. Br J Haematol 173:805–811

    Article  CAS  PubMed  Google Scholar 

  118. Li Y, Liu B, Fukudome EY, Lu J, Chong W, Jin G, Liu Z, Velmahos GC, Demoya M, King DR (2011) Identification of citrullinated histone H3 as a potential serum protein biomarker in a lethal model of lipopolysaccharide-induced shock. Surgery 150:442–451

    Article  PubMed  Google Scholar 

  119. Beurskens DM (2020) Extracellular histone H3: biomarker and therapeutic target for the prevention of tissue damage. Ridderprint, Maastricht

    Google Scholar 

  120. Whiteside TL, Boyiadzis M (2017) Response commentary: exosomes vs microvesicles in hematological malignancies. Leukemia 31:2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ramirez MI, Amorim MG, Gadelha C, Milic I, Welsh JA, Freitas VM, Nawaz M, Akbar N, Couch Y, Makin L (2018) Technical challenges of working with extracellular vesicles. Nanoscale 10:881–906

    Article  CAS  PubMed  Google Scholar 

  122. Cvjetkovic A, Jang SC, Konecna B, Hoog JL, Sihlbom C, Lasser C, Lotvall J (2016) Detailed analysis of protein topology of extracellular vesicles-evidence of unconventional membrane protein orientation. Sci Rep 6:36338. https://doi.org/10.1038/srep36338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Qi L, Rojas J-M, Ostrand-Rosenberg S (2000) Tumor cells present MHC class II-restricted nuclear and mitochondrial antigens and are the predominant antigen presenting cells in vivo. J Immunol 165:5451–5461

    Article  CAS  PubMed  Google Scholar 

  124. Baden P, Deleidi M (2016) Mitochondrial antigen presentation: a vacuolar path to autoimmunity in Parkinson’s disease. Trends Immunol 37:719–721

    Article  CAS  PubMed  Google Scholar 

  125. Kawasugi K, Yamamoto T, Shirasaki R, Tashiro H, Shirafuji N (2010) Increased levels of histone in human plasma in septic patients with DIC. Blood 116:1422

    Article  Google Scholar 

  126. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP (2018) Isolation of extracellular vesicles: general methodologies and latest trends. BioMed Res Int 2018:8545347

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors duly acknowledge Department of Science and Technology (DST) (EMR/2016/002571), Indian Council of Medical Research (ICMR) (adhoc grants), and University of Delhi, Delhi, India for funding in terms of research grants. AS acknowledges CSIR for fellowship.

Author information

Authors and Affiliations

Authors

Contributions

AS & SV: Designing and writing of the manuscript; SBM: critical evaluation and correction of the manuscript; MMC: revising the manuscript; JSP: conceptualization, designing, flow and revision of text and figures of the manuscript.

Corresponding author

Correspondence to Jogeswar S. Purohit.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Verma, S., Modak, S.B. et al. Extra-nuclear histones: origin, significance and perspectives. Mol Cell Biochem 477, 507–524 (2022). https://doi.org/10.1007/s11010-021-04300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04300-4

Keywords

Navigation