Skip to main content
Log in

Targeting key transcriptional factor STAT3 in colorectal cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In developed countries, colorectal cancer (CRC) is the fourth most common cancer and the second leading cause of malignant-related deaths. CRC is treatable cancer when diagnosed early; however, diagnosis at the advanced stage is associated with a poor prognosis. Although chemotherapy is generally very promising, STAT3 protein which is overexpressed and persistently activated in CRC cells is observed to be the major contributor of chemoresistance development. It has been shown to play a prominent and pathogenic role in CRC initiation, progression, and metastasis. While over the past few years, research has been focused on STAT3 which is expressed at the center of various oncogenic pathways. This review is a discussion of the oncogenic role of STAT3 in CRC and potential therapeutic STAT3 inhibitors and analogs used to control and treat CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

5-FU:

5-Fluoro uracil

ASO:

Antisense oligonucleotide

Bax:

Bcl-2 associated x protein

Bcl-2:

B-cell lymphoma 2

CCND2:

Cell cycle cyclin D2

CMTM4:

CKLF-like MARVEl transmembrane domain containing 4

CRC:

Colorectal cancer

CSO-SA:

Curcumin encapsulated in stearic acid g-chitosan oligosaccharide

DBD:

DNA binding domain

dODNs:

Decoy oligodeoxynucleotides

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal regulated kinases

FAK:

Focal adhesion kinase

FGF:

Fibroblast growth factor

FOLFOX:

5-Fluorouracil, leucovorin and oxaliplatin

GPCRs:

G-protein coupled receptors

JAK:

Janus kinase

MMP:

Matrix metalloproteinases

NTD:

N-terminal domain

PDB:

Protein Data Bank

PDGF:

Platelet derived growth factor

PIAS:

Protein inhibitor of activated STAT

P-STAT3:

Phosphorylated STAT3

ROS:

Reactive oxygen species

RT:

Radiotherapy

SH2:

Src homology

SOCS:

Suppressors of cytokine signaling

STAT:

Signal transducers and activators of transcription

TF:

Transcription factors

TME:

Tumor microenvironment

TNBS:

2,4,6- Trinitrobenzene sulfonic acid

TLRs:

Toll like receptors

VEGF:

Vascular endothelial growth factor

WHO:

World health organization

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 68:394–424. https://doi.org/10.3322/caac.21492

  2. White A, Ironmonger L, Steele RJC, Ormiston-Smith N, Crawford C, Seims A (2018) A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer 18:906–906. https://doi.org/10.1186/s12885-018-4786-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang Y, Wang G, He J, Ren S, Wu F, Zhang J, Wang F (2017) Gender differences in colorectal cancer survival: a meta-analysis. Int J Cancer 141:1942–1949. https://doi.org/10.1002/ijc.30827

    Article  CAS  PubMed  Google Scholar 

  4. Bailey CE, Hu C-Y, You YN, Bednarski BK, Rodriguez-Bigas MA, Skibber JM, Cantor SB, Chang GJ (2015) Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975–2010. JAMA Surg 150:17–22. https://doi.org/10.1001/jamasurg.2014.1756

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dariya B, Aliya S, Merchant N, Alam A and Nagaraju GP (2020) Colorectal Cancer Biology, Diagnosis, and Therapeutic Approaches. Critical Reviews™ in Oncogenesis 25. https://doi.org/10.1615/CritRevOncog.2020035067

  6. Laudisi F, Cherubini F, Di Grazia A, Dinallo V, Di Fusco D, Franzè E, Ortenzi A, Salvatori I, Scaricamazza S, Monteleone I (2019) Progranulin sustains STAT 3 hyper-activation and oncogenic function in colorectal cancer cells. Mol Oncol 13:2142–2159. https://doi.org/10.1002/1878-0261.12552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abroun S, Saki N, Ahmadvand M, Asghari F, Salari F, Rahim F (2015) STATs: an old story, yet mesmerizing. Cell Journal (Yakhteh) 17:395. https://doi.org/10.22074/cellj.2015.1

    Article  Google Scholar 

  8. De Jong PR, Mo J-H, Harris AR, Lee J, Raz E (2014) STAT3: An anti-invasive factor in colorectal cancer? Cancers 6:1394–1407. https://doi.org/10.3390/cancers6031394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wei N, Li J, Fang C, Chang J, Xirou V, Syrigos NK, Marks BJ, Chu E, Schmitz JC (2019) Targeting colon cancer with the novel STAT3 inhibitor bruceantinol. Oncogene 38:1676–1687. https://doi.org/10.1038/s41388-018-0547-y

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Ji Q, Fan Z, Li Q (2015) Cellular signaling pathways implicated in metastasis of colorectal cancer and the associated targeted agents. Future Oncol 11:2911–2922. https://doi.org/10.2217/fon.15.235

    Article  CAS  PubMed  Google Scholar 

  11. Liang Y, Kong D, Zhang Y et al (2020) Fisetin Inhibits Cell Proliferation and Induces Apoptosis via JAK/STAT3 Signaling Pathways in Human Thyroid TPC 1 Cancer Cells. Biotechnol Bioprocess Eng 25:197–205. https://doi.org/10.1007/s12257-019-0326-9

    Article  CAS  Google Scholar 

  12. Liang T, He Y, Chang Y, Liu X (2019) 6-shogaol a Active Component from Ginger Inhibits Cell Proliferation and Induces Apoptosis through Inhibition of STAT-3 Translocation in Ovarian Cancer Cell Lines (A2780). Biotechnol Bioprocess Eng 24:560–567. https://doi.org/10.1007/s12257-018-0502-3

    Article  CAS  Google Scholar 

  13. Debnath B, Xu S, Neamati N (2012) Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. J Med Chem 55:6645–6668. https://doi.org/10.1021/jm300207s

    Article  CAS  PubMed  Google Scholar 

  14. Spitzner M, Ebner R, Wolff HA, Ghadimi BM, Wienands J, Grade M (2014) STAT3: a novel molecular mediator of resistance to chemoradiotherapy. Cancers 6:1986–2011. https://doi.org/10.3390/cancers6041986

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sgrignani J, Garofalo M, Matkovic M, Merulla J, Catapano CV, Cavalli A (2018) Structural Biology of STAT3 and Its Implications for Anticancer Therapies Development. Int J Mol Sci 19:1591. https://doi.org/10.3390/ijms19061591

    Article  CAS  PubMed Central  Google Scholar 

  16. Belo Y, Mielko Z, Nudelman H, Afek A, Ben-David O, Shahar A, Zarivach R, Gordan R and Arbely E (2019) Unexpected implications of STAT3 acetylation revealed by genetic encoding of acetyl-lysine. Biochimica et Biophysica Acta (BBA)-General Subjects 1863:1343–1350. https://doi.org/10.1016/j.bbagen.2019.05.019

  17. Hu T, Yeh JE, Pinello L, Jacob J, Chakravarthy S, Yuan G-C, Chopra R, Frank DA (2015) Impact of the N-terminal domain of STAT3 in STAT3-dependent transcriptional activity. Mol Cell Biol 35:3284–3300. https://doi.org/10.1128/MCB.00060-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren Z, Mao X, Mertens C, Krishnaraj R, Qin J, Mandal PK, Romanowski MJ, McMurray JS, Chen X (2008) Crystal structure of unphosphorylated STAT3 core fragment. Biochem Biophys Res Commun 374:1–5. https://doi.org/10.1016/j.bbrc.2008.04.049

    Article  CAS  PubMed  Google Scholar 

  19. Becker S, Groner B, Müller CW (1998) Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature 394:145–151. https://doi.org/10.1038/28101

    Article  CAS  PubMed  Google Scholar 

  20. La Sala G, Michiels C, Kükenshöner T, Brandstoetter T, Maurer B, Koide A, Lau K, Pojer F, Koide S, Sexl V (2020) Selective inhibition of STAT3 signaling using monobodies targeting the coiled-coil and N-terminal domains. Nat Commun 11:1–16. https://doi.org/10.1038/s41467-020-17920-z

    Article  CAS  Google Scholar 

  21. Marino F, Orecchia V, Regis G, Musteanu M, Tassone B, Jon C, Forni M, Calautti E, Chiarle R and Eferl R (2014) STAT3β controls inflammatory responses and early tumor onset in skin and colon experimental cancer models. American journal of cancer research 4:484. PMC4163613

  22. Furtek SL, Backos DS, Matheson CJ, Reigan P (2016) Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem Biol 11:308–318. https://doi.org/10.1021/acschembio.5b00945

    Article  CAS  PubMed  Google Scholar 

  23. Liu L, Leung K, Chan DS, Wang Y, Ma D, Leung CH (2014) Identification of a natural product-like STAT3 dimerization inhibitor by structure-based virtual screening. Cell Death Dis 5:e1293–e1293. https://doi.org/10.1038/cddis.2014.250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Beebe JD, Liu J-Y, Zhang J-T (2018) Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we? Pharmacol Ther 191:74–91. https://doi.org/10.1016/j.pharmthera.2018.06.006

    Article  CAS  PubMed  Google Scholar 

  25. Inokuchi M, Murayama T, Hayashi M, Takagi Y, Kato K, Enjoji M, Kojima K, Kumagai J, Sugihara K (2011) Prognostic value of co-expression of STAT3, mTOR and EGFR in gastric cancer. Exp Ther Med 2:251–256. https://doi.org/10.3892/etm.2011.187

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ji K, Zhang M, Chu Q, Gan Y, Ren H, Zhang L, Wang L, Li X, Wang W (2016) The role of p-STAT3 as a prognostic and clinicopathological marker in colorectal cancer: a systematic review and meta-analysis. PLoS ONE 11:e0160125. https://doi.org/10.1371/journal.pone.0160125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Uchiyama T, Takahashi H, Endo H, Sugiyama M, Sakai E, Hosono K, Nagashima Y, Inayama Y, Wada K, Hippo Y (2011) Role of the long form leptin receptor and of the STAT3 signaling pathway in colorectal cancer progression. Int J Oncol 39:935–940. https://doi.org/10.3892/ijo.2011.1105

    Article  CAS  PubMed  Google Scholar 

  28. Yang L, Lin C, Liu Z-R (2006) P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from β-catenin. Cell 127:139–155. https://doi.org/10.1016/j.cell.2006.08.036

    Article  PubMed  Google Scholar 

  29. Sirvent A, Boureux A, Simon V, Leroy C, Roche S (2007) The tyrosine kinase Abl is required for Src-transforming activity in mouse fibroblasts and human breast cancer cells. Oncogene 26:7313–7323. https://doi.org/10.1038/sj.onc.1210543

    Article  CAS  PubMed  Google Scholar 

  30. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11:558–572. https://doi.org/10.1038/nrc3090

    Article  CAS  PubMed  Google Scholar 

  31. Park S-Y, Lee C-J, Choi J-H, Kim J-H, Kim J-W, Kim J-Y, Nam J-S (2019) The JAK2/STAT3/CCND2 Axis promotes colorectal Cancer stem cell persistence and radioresistance. J Exp Clin Cancer Res 38:1–18. https://doi.org/10.1186/s13046-019-1405-7

    Article  CAS  Google Scholar 

  32. Du W, Hong J, Wang YC, Zhang YJ, Wang P, Su WY, Lin YW, Lu R, Zou WP, Xiong H (2012) Inhibition of JAK2/STAT3 signalling induces colorectal cancer cell apoptosis via mitochondrial pathway. J Cell Mol Med 16:1878–1888. https://doi.org/10.1111/j.1582-4934.2011.01483.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cen L, Hutzen B, Ball S, DeAngelis S, Chen C-L, Fuchs JR, Li C, Li P-K, Lin J (2009) New structural analogues of curcumin exhibit potent growth suppressive activity in human colorectal carcinoma cells. BMC Cancer 9:1–8. https://doi.org/10.1186/1471-2407-9-99

    Article  CAS  Google Scholar 

  34. Lin L, Liu Y, Li H, Li P, Fuchs J, Shibata H, Iwabuchi Y, Lin J (2011) Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. Br J Cancer 105:212–220. https://doi.org/10.1038/bjc.2011.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rahmani AH, Al Zohairy MA, Aly SM, Khan MA (2014) Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. Biomed Res Int. https://doi.org/10.1155/2014/761608

    Article  PubMed  PubMed Central  Google Scholar 

  36. Park W, Amin AR, Chen ZG, Shin DM (2013) New perspectives of curcumin in cancer prevention. Cancer Prev Res 6:387–400. https://doi.org/10.1158/1940-6207.CAPR-12-0410

    Article  CAS  Google Scholar 

  37. Calvo E, Cortés J, Rodríguez J, Fernández-Hidalgo Ó, Rebollo J, Martín-Algarra S, García-Foncillas J, Martínez-Monge R, de Irala J, Brugarolas A (2002) Irinotecan, oxaliplatin, and 5-fluorouracil/leucovorin combination chemotherapy in advanced colorectal carcinoma: a phase II study. Clin Colorectal Cancer 2:104–110

    Article  CAS  Google Scholar 

  38. Chung SS, Dutta P, Chard N, Wu Y, Chen Q-H, Chen G, Vadgama J (2019) A novel curcumin analog inhibits canonical and non-canonical functions of telomerase through STAT3 and NF-κB inactivation in colorectal cancer cells. Oncotarget 10:4516. https://doi.org/10.18632/oncotarget.27000

    Article  PubMed  PubMed Central  Google Scholar 

  39. Noureddin SA, El-Shishtawy RM, Al-Footy KO (2019) Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur J Med Chem 182:111631. https://doi.org/10.1016/j.ejmech.2019.111631

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Y-X, Xia W, Yue W, Peng C, Rahman K, Zhang H (2015) Rhein: a review of pharmacological activities. Eviden Based Complement Altern Med. https://doi.org/10.1155/2015/578107

  41. Yang L, Lin S, Kang Y, Xiang Y, Xu L, Li J, Dai X, Liang G, Huang X, Zhao C (2019) Rhein sensitizes human pancreatic cancer cells to EGFR inhibitors by inhibiting STAT3 pathway. J Exp Clin Cancer Res 38:1–13. https://doi.org/10.1186/s13046-018-1015-9

    Article  Google Scholar 

  42. Zhuang Y, Bai Y, Hu Y, Guo Y, Xu L, Hu W, Yang L, Zhao C, Li X, Zhao H (2019) Rhein sensitizes human colorectal cancer cells to EGFR inhibitors by inhibiting STAT3 pathway. Onco Targets Ther 12:5281. https://doi.org/10.2147/OTT.S206833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Riaz A, Saleem B, Hussain G, Sarfraz I, Nageen B, Zara R, Manzoor M and Rasul A (2019) Eriocalyxin B Biological Activity: A Review on Its Mechanism of Action. Natural Product Communications 14:1934578X19868598. doi: https://doi.org/10.1177/1934578x19868598

  44. Lu YM, Chen W, Zhu JS, Chen WX, Chen NW (2016) Eriocalyxin B blocks human SW1116 colon cancer cell proliferation, migration, invasion, cell cycle progression and angiogenesis via the JAK2/STAT3 signaling pathway. Mol Med Rep 13:2235–2240. https://doi.org/10.3892/mmr.2016.4800

    Article  CAS  PubMed  Google Scholar 

  45. Yu X, He L, Cao P, Yu Q (2015) Eriocalyxin B inhibits STAT3 signaling by covalently targeting STAT3 and blocking phosphorylation and activation of STAT3. PLoS ONE 10:e0128406. https://doi.org/10.1371/journal.pone.0128406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun K-X, Xia H-W, Xia R-L (2015) Anticancer effect of salidroside on colon cancer through inhibiting JAK2/STAT3 signaling pathway. Int J Clin Exp Pathol 8:615 (PMID: 25755753)

    PubMed  PubMed Central  Google Scholar 

  47. Qi X, Li M, Zhang X-m, Dai X-f, Cui J, Li D-h, Gu Q-q, Z-h Lv, Li J (2020) Trichothecin Inhibits Cancer-Related Features in Colorectal Cancer Development by Targeting STAT3. Molecules 25:2306. https://doi.org/10.3390/molecules25102306

    Article  CAS  PubMed Central  Google Scholar 

  48. Schust J, Sperl B, Hollis A, Mayer TU, Berg T (2006) Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 13:1235–1242. https://doi.org/10.1016/j.chembiol.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  49. Lin L, Liu A, Peng Z, Lin H-J, Li P-K, Li C, Lin J (2011) STAT3 is necessary for proliferation and survival in colon cancer–initiating cells. Can Res 71:7226–7237. https://doi.org/10.1158/0008-5472.CAN-10-4660

    Article  CAS  Google Scholar 

  50. Proia TA, Singh M, Woessner R, Carnevalli L, Bommakanti G, Magiera L, Srinivasan S, Grosskurth S, Collins M, Womack C, Griffin M, Ye M, Cantin S, Russell D, Xie M, Hughes A, Deng N, Mele DA, Fawell S, Barry S, Reimer C, Barrett JC, McCoon P (2020) <em>STAT3</em> Antisense Oligonucleotide Remodels the Suppressive Tumor Microenvironment to Enhance Immune Activation in Combination with Anti–PD-L1. Clin Cancer Res 26:6335–6349. https://doi.org/10.1158/1078-0432.ccr-20-1066

    Article  CAS  PubMed  Google Scholar 

  51. Bai A, Hu P, Chen J, Song X, Chen W, Peng W, Zeng Z, Gao X (2007) Blockade of STAT3 by antisense oligonucleotide in TNBS-induced murine colitis. Int J Colorectal Dis 22:625–635. https://doi.org/10.1007/s00384-006-0229-z

    Article  PubMed  Google Scholar 

  52. Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14:736–746. https://doi.org/10.1038/nrc3818

    Article  CAS  PubMed  Google Scholar 

  53. Souissi I, Ladam P, Cognet JAH, Le Coquil S, Varin-Blank N, Baran-Marszak F, Metelev V, Fagard R (2012) A STAT3-inhibitory hairpin decoy oligodeoxynucleotide discriminates between STAT1 and STAT3 and induces death in a human colon carcinoma cell line. Mol Cancer 11:12. https://doi.org/10.1186/1476-4598-11-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang J, Ke Y, Shu T (2020) Crocin has pharmacological effects against the pathological behavior of colon cancer cells by interacting with the STAT3 signaling pathway. Exp Ther Med 19:1297–1303. https://doi.org/10.3892/etm.2019.8329

    Article  CAS  PubMed  Google Scholar 

  55. Ramasamy TS, Ayob AZ, Myint HH, Thiagarajah S, Amini F (2015) Targeting colorectal cancer stem cells using curcumin and curcumin analogues: insights into the mechanism of the therapeutic efficacy. Cancer Cell Int 15:96. https://doi.org/10.1186/s12935-015-0241-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang K, Zhang T, Liu L, Wang X, Wu P, Chen Z, Ni C, Zhang J, Hu F, Huang J (2012) Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells. Int J Nanomedicine 7:4487–4497. https://doi.org/10.2147/ijn.s34702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xue H, Li T, Wang P, Mo X, Zhang H, Ding S, Ma D, Lv W, Zhang J, Han W (2019) CMTM4 inhibits cell proliferation and migration via AKT, ERK1/2, and STAT3 pathway in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 51:915–924. https://doi.org/10.1093/abbs/gmz084

    Article  CAS  Google Scholar 

  58. Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ (2020) Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 To Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 72:486. https://doi.org/10.1124/pr.119.018440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aliya Sheik or Yun Suk Huh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalikonda, G., Lee, H., Sheik, A. et al. Targeting key transcriptional factor STAT3 in colorectal cancer. Mol Cell Biochem 476, 3219–3228 (2021). https://doi.org/10.1007/s11010-021-04156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04156-8

Keywords

Navigation