Skip to main content
Log in

Purine-rich element binding protein B attenuates the coactivator function of myocardin by a novel molecular mechanism of smooth muscle gene repression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Myocardin is a potent transcriptional coactivator protein, which functions as the master regulator of vascular smooth muscle cell differentiation. The cofactor activity of myocardin is mediated by its physical interaction with serum response factor, a ubiquitously expressed transactivator that binds to CArG boxes in genes encoding smooth muscle-restricted proteins. Purine-rich element binding protein B (Purβ) represses the transcription of the smooth muscle α-actin gene (Acta2) in fibroblasts and smooth muscle cells by interacting with single-stranded DNA sequences flanking two 5′ CArG boxes in the Acta2 promoter. In this study, the ability of Purβ to modulate the cofactor activity of myocardin was investigated using a combination of cellular and biochemical approaches. Results of smooth muscle gene promoter-reporter assays indicated that Purβ specifically inhibits the coactivator function of myocardin in a manner requiring the presence of all three single-stranded DNA binding domains in the Purβ homodimer. DNA binding analyses demonstrated that Purβ interacts with CArG-containing DNA elements with a much lower affinity compared to other purine-rich target sequences present in the Acta2 promoter. Co-immunoprecipitation and DNA pull-down assays revealed that Purβ associates with myocardin and serum response factor when free or bound to duplex DNA containing one or more CArG boxes. Functional analysis of engineered Purβ point mutants identified several amino acid residues essential for suppression of myocardin activity. Collectively, these findings suggest an inhibitory mechanism involving direct protein–protein interaction between the homodimeric Purβ repressor and the myocardin-serum response factor-CArG complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data sets used and/or analyzed that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

Purα:

Purine-rich element binding protein A

Purβ:

Purine-rich element binding protein B

SRF:

Serum response factor

Myocd:

Myocardin

ssDNA:

Single-stranded DNA

MCAT:

Muscle-CAT

CArG:

CC(A + T-rich)6GG

MEF:

Mouse embryo fibroblast

VSMC:

Vascular smooth muscle cell

FBS:

Fetal bovine serum

WT:

Wild type

BSA:

Bovine serum albumin

SDS:

Sodium dodecyl sulfate

PAGE:

Polyacrylamide gel electrophoresis

DTT:

Dithiothreitol

PMSF:

Phenylmethylsulfonyl fluoride

ELISA:

Enzyme-linked immunosorbent assay

HRP:

Horseradish peroxidase

TGF-β1:

Transforming growth factor β1

bp:

Base pair

nt:

Nucleotide

h:

Hour

min:

Minute

sec:

Second

References

  1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O’Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137:e67–e492. https://doi.org/10.1161/cir.0000000000000558

    Article  PubMed  Google Scholar 

  2. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126. https://doi.org/10.1056/nejm199901143400207

    Article  CAS  PubMed  Google Scholar 

  3. Tabas I (2017) 2016 Russell Ross Memorial Lecture in Vascular Biology: molecular-cellular mechanisms in the progression of atherosclerosis. Arterioscler Thromb Vasc Biol 37:183–189. https://doi.org/10.1161/atvbaha.116.308036

    Article  CAS  PubMed  Google Scholar 

  4. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241. https://doi.org/10.1038/35025203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118:692–702. https://doi.org/10.1161/circresaha.115.306361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Allahverdian S, Chaabane C, Boukais K, Francis GA, Bochaton-Piallat ML (2018) Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res 114:540–550. https://doi.org/10.1093/cvr/cvy022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801. https://doi.org/10.1152/physrev.00041.2003

    Article  CAS  PubMed  Google Scholar 

  8. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517. https://doi.org/10.1152/physrev.1995.75.3.487

    Article  CAS  PubMed  Google Scholar 

  9. Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61. https://doi.org/10.1152/physrev.1979.59.1.1

    Article  CAS  PubMed  Google Scholar 

  10. Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AA, Greene ES, Straub AC, Isakson B, Randolph GJ, Owens GK (2015) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21:628–637. https://doi.org/10.1038/nm.3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clarke MC, Figg N, Maguire JJ, Davenport AP, Goddard M, Littlewood TD, Bennett MR (2006) Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med 12:1075–1080. https://doi.org/10.1038/nm1459

    Article  CAS  PubMed  Google Scholar 

  12. Clarke MC, Littlewood TD, Figg N, Maguire JJ, Davenport AP, Goddard M, Bennett MR (2008) Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ Res 102:1529–1538. https://doi.org/10.1161/circresaha.108.175976

    Article  CAS  PubMed  Google Scholar 

  13. Rong JX, Shapiro M, Trogan E, Fisher EA (2003) Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci USA 100:13531–13536. https://doi.org/10.1073/pnas.1735526100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schrijvers DM, De Meyer GR, Kockx MM, Herman AG, Martinet W (2005) Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 25:1256–1261. https://doi.org/10.1161/01.ATV.0000166517.18801.a7

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Wang DZ, Pipes GC, Olson EN (2003) Myocardin is a master regulator of smooth muscle gene expression. Proc Natl Acad Sci USA 100:7129–7134. https://doi.org/10.1073/pnas.1232341100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miano JM (2015) Myocardin in biology and disease. J Biomed Res 29:3–19. https://doi.org/10.7555/jbr.29.20140151

    Article  PubMed  Google Scholar 

  17. Chen J, Kitchen CM, Streb JW, Miano JM (2002) Myocardin: a component of a molecular switch for smooth muscle differentiation. J Mol Cell Cardiol 34:1345–1356. https://doi.org/10.1006/jmcc.2002.2086

    Article  CAS  PubMed  Google Scholar 

  18. Long X, Bell RD, Gerthoffer WT, Zlokovic BV, Miano JM (2008) Myocardin is sufficient for a smooth muscle-like contractile phenotype. Arterioscler Thromb Vasc Biol 28:1505–1510. https://doi.org/10.1161/atvbaha.108.166066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carlini LE, Getz MJ, Strauch AR, Kelm RJ Jr (2002) Cryptic MCAT enhancer regulation in fibroblasts and smooth muscle cells. Suppression of TEF-1 mediated activation by the single-stranded DNA-binding proteins, Pur alpha, Pur beta, and MSY1. J Biol Chem 277:8682–8692. https://doi.org/10.1074/jbc.M109754200

    Article  CAS  PubMed  Google Scholar 

  20. Knapp AM, Ramsey JE, Wang SX, Godburn KE, Strauch AR, Kelm RJ Jr (2006) Nucleoprotein interactions governing cell type-dependent repression of the mouse smooth muscle alpha-actin promoter by single-stranded DNA-binding proteins Pur alpha and Pur beta. J Biol Chem 281:7907–7918. https://doi.org/10.1074/jbc.M509682200

    Article  CAS  PubMed  Google Scholar 

  21. Imamura M, Long X, Nanda V, Miano JM (2010) Expression and functional activity of four myocardin isoforms. Gene 464:1–10. https://doi.org/10.1016/j.gene.2010.03.012

    Article  CAS  PubMed  Google Scholar 

  22. Kelm RJ Jr, Wang SX, Polikandriotis JA, Strauch AR (2003) Structure/function analysis of mouse Purbeta, a single-stranded DNA-binding repressor of vascular smooth muscle alpha-actin gene transcription. J Biol Chem 278:38749–38757. https://doi.org/10.1074/jbc.M306163200

    Article  CAS  PubMed  Google Scholar 

  23. Rumora AE, Wang SX, Ferris LA, Everse SJ, Kelm RJ Jr (2013) Structural basis of multisite single-stranded DNA recognition and ACTA2 repression by purine-rich element binding protein B (Purbeta). Biochemistry 52:4439–4450. https://doi.org/10.1021/bi400283r

    Article  CAS  PubMed  Google Scholar 

  24. Rumora AE, Ferris LA, Wheeler TR, Kelm RJ Jr (2016) Electrostatic and hydrophobic interactions mediate single-stranded DNA recognition and Acta2 repression by purine-rich element-binding protein B. Biochemistry 55:2794–2805. https://doi.org/10.1021/acs.biochem.6b00006

    Article  CAS  PubMed  Google Scholar 

  25. Ferris LA, Kelm RJ Jr (2019) Structural and functional analysis of single-nucleotide polymorphic variants of purine-rich element-binding protein B. J Cell Biochem 120:5835–5851. https://doi.org/10.1002/jcb.27869

    Article  CAS  PubMed  Google Scholar 

  26. Schrodinger LLC (2015) The PyMOL molecular graphics system. Version 1.8

  27. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  28. Ramsey JE, Daugherty MA, Kelm RJ Jr (2007) Hydrodynamic studies on the quaternary structure of recombinant mouse Purbeta. J Biol Chem 282:1552–1560. https://doi.org/10.1074/jbc.M609356200

    Article  CAS  PubMed  Google Scholar 

  29. Stoflet ES, Schmidt LJ, Elder PK, Korf GM, Foster DN, Strauch AR, Getz MJ (1992) Activation of a muscle-specific actin gene promoter in serum-stimulated fibroblasts. Mol Biol Cell 3:1073–1083. https://doi.org/10.1091/mbc.3.10.1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang SX, Elder PK, Zheng Y, Strauch AR, Kelm RJ Jr (2005) Cell cycle-mediated regulation of smooth muscle alpha-actin gene transcription in fibroblasts and vascular smooth muscle cells involves multiple adenovirus E1A-interacting cofactors. J Biol Chem 280:6204–6214. https://doi.org/10.1074/jbc.M409506200

    Article  CAS  PubMed  Google Scholar 

  31. Foster DN, Min B, Foster LK, Stoflet ES, Sun S, Getz MJ, Strauch AR (1992) Positive and negative cis-acting regulatory elements mediate expression of the mouse vascular smooth muscle alpha-actin gene. J Biol Chem 267:11995–12003

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Niu W, Nikiforov Y, Naito S, Chernausek S, Witte D, LeRoith D, Strauch A, Fagin JA (1997) Targeted overexpression of IGF-I evokes distinct patterns of organ remodeling in smooth muscle cell tissue beds of transgenic mice. J Clin Invest 100:1425–1439. https://doi.org/10.1172/jci119663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN (2001) Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105:851–862

    Article  CAS  PubMed  Google Scholar 

  34. Hendrix JA, Wamhoff BR, McDonald OG, Sinha S, Yoshida T, Owens GK (2005) 5’ CArG degeneracy in smooth muscle alpha-actin is required for injury-induced gene suppression in vivo. J Clin Invest 115:418–427. https://doi.org/10.1172/jci22648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hariharan S, Kelm RJ Jr, Strauch AR (2014) The Puralpha/Purbeta single-strand DNA-binding proteins attenuate smooth-muscle actin gene transactivation in myofibroblasts. J Cell Physiol 229:1256–1271. https://doi.org/10.1002/jcp.24564

    Article  CAS  PubMed  Google Scholar 

  36. McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK (2006) Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest 116:36–48. https://doi.org/10.1172/jci26505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kelm RJ Jr, Elder PK, Strauch AR, Getz MJ (1997) Sequence of cDNAs encoding components of vascular actin single-stranded DNA-binding factor 2 establish identity to Puralpha and Purbeta. J Biol Chem 272:26727–26733. https://doi.org/10.1074/jbc.272.42.26727

    Article  CAS  PubMed  Google Scholar 

  38. Gupta M, Sueblinvong V, Raman J, Jeevanandam V, Gupta MP (2003) Single-stranded DNA-binding proteins PURalpha and PURbeta bind to a purine-rich negative regulatory element of the alpha-myosin heavy chain gene and control transcriptional and translational regulation of the gene expression. Implications in the repression of alpha-myosin heavy chain during heart failure. J Biol Chem 278:44935–44948. https://doi.org/10.1074/jbc.M307696200

    Article  CAS  PubMed  Google Scholar 

  39. Subramanian SV, Kelm RJ, Polikandriotis JA, Orosz CG, Strauch AR (2002) Reprogramming of vascular smooth muscle alpha-actin gene expression as an early indicator of dysfunctional remodeling following heart transplant. Cardiovasc Res 54:539–548. https://doi.org/10.1016/s0008-6363(02)00270-5

    Article  CAS  PubMed  Google Scholar 

  40. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ Jr, Olson EN (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17:662–673. https://doi.org/10.1016/j.devcel.2009.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gurha P, Abreu-Goodger C, Wang T, Ramirez MO, Drumond AL, van Dongen S, Chen Y, Bartonicek N, Enright AJ, Lee B, Kelm RJ Jr, Reddy AK, Taffet GE, Bradley A, Wehrens XH, Entman ML, Rodriguez A (2012) Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation 125:2751–2761. https://doi.org/10.1161/circulationaha.111.044354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yousefzadeh N, Jeddi S, Ghiasi R, Alipour MR (2017) Effect of fetal hypothyroidism on MyomiR network and its target gene expression profiles in heart of offspring rats. Mol Cell Biochem 436:179–187. https://doi.org/10.1007/s11010-017-3089-7

    Article  CAS  PubMed  Google Scholar 

  43. Subramanian SV, Polikandriotis JA, Kelm RJ Jr, David JJ, Orosz CG, Strauch AR (2004) Induction of vascular smooth muscle alpha-actin gene transcription in transforming growth factor beta1-activated myofibroblasts mediated by dynamic interplay between the Pur repressor proteins and Sp1/Smad coactivators. Mol Biol Cell 15:4532–4543. https://doi.org/10.1091/mbc.e04-04-0348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gupta M, Sueblinvong V, Gupta MP (2007) The single-strand DNA/RNA-binding protein, Purbeta, regulates serum response factor (SRF)-mediated cardiac muscle gene expression. Can J Physiol Pharmacol 85:349–359. https://doi.org/10.1139/y07-009

    Article  CAS  PubMed  Google Scholar 

  45. Cao D, Wang Z, Zhang CL, Oh J, Xing W, Li S, Richardson JA, Wang DZ, Olson EN (2005) Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin. Mol Cell Biol 25:364–376. https://doi.org/10.1128/mcb.25.1.364-376.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu ZP, Wang Z, Yanagisawa H, Olson EN (2005) Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin. Dev Cell 9:261–270. https://doi.org/10.1016/j.devcel.2005.05.017

    Article  CAS  PubMed  Google Scholar 

  47. Zhou J, Hu G, Wang X (2010) Repression of smooth muscle differentiation by a novel high mobility group box-containing protein, HMG2L1. J Biol Chem 285:23177–23185. https://doi.org/10.1074/jbc.M110.109868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tanaka T, Sato H, Doi H, Yoshida CA, Shimizu T, Matsui H, Yamazaki M, Akiyama H, Kawai-Kowase K, Iso T, Komori T, Arai M, Kurabayashi M (2008) Runx2 represses myocardin-mediated differentiation and facilitates osteogenic conversion of vascular smooth muscle cells. Mol Cell Biol 28:1147–1160. https://doi.org/10.1128/mcb.01771-07

    Article  CAS  PubMed  Google Scholar 

  49. Xie C, Guo Y, Zhu T, Zhang J, Ma PX, Chen YE (2012) Yap1 protein regulates vascular smooth muscle cell phenotypic switch by interaction with myocardin. J Biol Chem 287:14598–14605. https://doi.org/10.1074/jbc.M111.329268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morita T, Hayashi K (2014) Arp5 is a key regulator of myocardin in smooth muscle cells. J Cell Biol 204:683–696. https://doi.org/10.1083/jcb.201307158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu F, Wang X, Hu G, Wang Y, Zhou J (2014) The transcription factor TEAD1 represses smooth muscle-specific gene expression by abolishing myocardin function. J Biol Chem 289:3308–3316. https://doi.org/10.1074/jbc.M113.515817

    Article  CAS  PubMed  Google Scholar 

  52. Zhang SM, Gao L, Zhang XF, Zhang R, Zhu LH, Wang PX, Tian S, Yang D, Chen K, Huang L, Zhang XD, Li H (2014) Interferon regulatory factor 8 modulates phenotypic switching of smooth muscle cells by regulating the activity of myocardin. Mol Cell Biol 34:400–414. https://doi.org/10.1128/mcb.01070-13

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhou YX, Shi Z, Singh P, Yin H, Yu YN, Li L, Walsh MP, Gui Y, Zheng XL (2016) Potential role of glycogen synthase kinase-3beta in regulation of myocardin activity in human vascular smooth muscle cells. J Cell Physiol 231:393–402. https://doi.org/10.1002/jcp.25084

    Article  CAS  PubMed  Google Scholar 

  54. Regan CP, Adam PJ, Madsen CS, Owens GK (2000) Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J Clin Investig 106:1139–1147. https://doi.org/10.1172/JCI10522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cogan JG, Subramanian SV, Polikandriotis JA, Kelm RJ Jr, Strauch AR (2002) Vascular smooth muscle alpha-actin gene transcription during myofibroblast differentiation requires Sp1/3 protein binding proximal to the MCAT enhancer. J Biol Chem 277:36433–36442. https://doi.org/10.1074/jbc.M203232200

    Article  CAS  PubMed  Google Scholar 

  56. Wamhoff BR, Hoofnagle MH, Burns A, Sinha S, McDonald OG, Owens GK (2004) A G/C element mediates repression of the SM22α promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circ Res 95:981–988. https://doi.org/10.1161/01.RES.0000147961.09840.fb

    Article  CAS  PubMed  Google Scholar 

  57. Knapp AM, Ramsey JE, Wang SX, Strauch AR, Kelm RJ Jr (2007) Structure-function analysis of mouse Pur beta II. Conformation altering mutations disrupt single-stranded DNA and protein interactions crucial to smooth muscle alpha-actin gene repression. J Biol Chem 282:35899–35909. https://doi.org/10.1074/jbc.M706617200

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a Grant from the American Heart Association Founders Affiliate 16GRNT31160006. LAF was supported by an institutional training Grant from the National Heart, Lung, and Blood Institute T32 HL007594.

Author information

Authors and Affiliations

Authors

Contributions

LAF and RJK conceived and designed the study. LAF, ATF, SXW, and RJK performed experiments and/or analyzed the resulting data. LAF and ATF developed and generated illustrations of protein structure and protein-DNA interaction. LAF, ATF, and RJK wrote and/or edited the manuscript.

Corresponding author

Correspondence to Robert J. Kelm Jr..

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

All experiments and procedures involving the use of mice were carried out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and with the approval of the University of Vermont Institutional Animal Care and Use Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1041 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferris, L.A., Foote, A.T., Wang, SX. et al. Purine-rich element binding protein B attenuates the coactivator function of myocardin by a novel molecular mechanism of smooth muscle gene repression. Mol Cell Biochem 476, 2899–2916 (2021). https://doi.org/10.1007/s11010-021-04117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04117-1

Keywords

Navigation