Skip to main content
Log in

YAP/TAZ affects the development of pulmonary fibrosis by regulating multiple signaling pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

YAP and TAZ are important co-activators of various biological processes in human body. YAP/TAZ plays a vital role in the development of pulmonary fibrosis. Dysregulation of the YAP/TAZ signaling pathway is one of the most important causes of pulmonary fibrosis. Therefore, considering its crucial role, summary of the signal mechanism of YAP/TAZ is of certain guiding significance for the research of YAP/TAZ as a therapeutic target. The present review provided a detailed introduction to various YAP/TAZ-related signaling pathways and clarified the specific role of YAP/TAZ in these pathways. In the meantime, we summarized and evaluated possible applications of YAP/TAZ in the treatment of pulmonary fibrosis. Overall, our study is of guiding significance for future research on the functional mechanism of YAP/TAZ underlying lung diseases as well as for identification of novel therapeutic targets specific to pulmonary fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article. The data and materials in the current study are available from the corresponding author on reasonable request.

References

  1. Chua F, Sly PD, Laurent GJ (2005) Pediatric lung disease: from proteinases to pulmonary fibrosis. Pediatr Pulmonol 39:392–401. https://doi.org/10.1002/ppul.20171

    Article  Google Scholar 

  2. Borensztajn K, Crestani B, Kolb M (2013) Idiopathic pulmonary fibrosis: from epithelial injury to biomarkers–insights from the bench side. Respiration 86:441–452. https://doi.org/10.1159/000357598

    Article  CAS  Google Scholar 

  3. Marshall DC, Salciccioli JD, Shea BS, Akuthota P (2018) Trends in mortality from idiopathic pulmonary fibrosis in the European Union: an observational study of the WHO mortality database from 2001–2013. Eur Respir J. https://doi.org/10.1183/13993003.01603-2017

    Article  Google Scholar 

  4. Travis WD, Costabel U, Hansell DM, King TE Jr, Lynch DA, Nicholson AG, Ryerson CJ, Ryu JH, Selman M, Wells AU, Behr J, Bouros D, Brown KK, Colby TV, Collard HR, Cordeiro CR, Cottin V, Crestani B, Drent M, Dudden RF, Egan J, Flaherty K, Hogaboam C, Inoue Y, Johkoh T, Kim DS, Kitaichi M, Loyd J, Martinez FJ, Myers J, Protzko S, Raghu G, Richeldi L, Sverzellati N, Swigris J, Valeyre D, Pneumonias AECoII (2013) An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188:733–748. https://doi.org/10.1164/rccm.201308-1483ST

    Article  Google Scholar 

  5. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE Jr, Kondoh Y, Myers J, Muller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schunemann HJ, Fibrosis AEJACoIP (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824. https://doi.org/10.1164/rccm.2009-040GL

    Article  Google Scholar 

  6. Mason DP, Brizzio ME, Alster JM, McNeill AM, Murthy SC, Budev MM, Mehta AC, Minai OA, Pettersson GB, Blackstone EH (2007) Lung transplantation for idiopathic pulmonary fibrosis. Ann Thorac Surg 84:1121–1128. https://doi.org/10.1016/j.athoracsur.2007.04.096

    Article  Google Scholar 

  7. Vancheri C, Failla M, Crimi N, Raghu G (2010) Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. Eur Respir J 35:496–504. https://doi.org/10.1183/09031936.00077309

    Article  CAS  Google Scholar 

  8. Kim HJ, Perlman D, Tomic R (2015) Natural history of idiopathic pulmonary fibrosis. Respir Med 109:661–670. https://doi.org/10.1016/j.rmed.2015.02.002

    Article  Google Scholar 

  9. Raghu G, Chen SY, Yeh WS, Maroni B, Li Q, Lee YC, Collard HR (2014) Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001–11. Lancet Respir Med 2:566–572. https://doi.org/10.1016/S2213-2600(14)70101-8

    Article  Google Scholar 

  10. Hutchinson J, Fogarty A, Hubbard R, McKeever T (2015) Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J 46:795–806. https://doi.org/10.1183/09031936.00185114

    Article  Google Scholar 

  11. Pereira CAC, Baddini-Martinez JA, Baldi BG, Jezler SFO, Rubin AS, Alves RLR, Zonzin GA, Quaresma M, Trampisch M, Rabahi MF (2019) Safety and tolerability of nintedanib in patients with idiopathic pulmonary fibrosis in Brazil. J Bras Pneumol 45:e20180414. https://doi.org/10.1590/1806-3713/e20180414

    Article  Google Scholar 

  12. Gao F, Wu J, Niu S, Sun T, Li F, Bai Y, Jin L, Lin L, Shi Q, Zhu LM, Du L (2019) Biodegradable, pH-sensitive hollow mesoporous organosilica nanoparticle (HMON) with controlled release of pirfenidone and ultrasound-target-microbubble-destruction (UTMD) for pancreatic cancer treatment. Theranostics 9:6002–6018. https://doi.org/10.7150/thno.36135

    Article  CAS  Google Scholar 

  13. Wilson KC, Raghu G (2015) The 2015 guidelines for idiopathic pulmonary fibrosis: an important chapter in the evolution of the management of patients with IPF. Eur Respir J 46:883–886. https://doi.org/10.1183/13993003.01335-2015

    Article  Google Scholar 

  14. Oldham JM, Ma SF, Martinez FJ, Anstrom KJ, Raghu G, Schwartz DA, Valenzi E, Witt L, Lee C, Vij R, Huang Y, Strek ME, Noth I, Investigators IP (2015) TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 192:1475–1482. https://doi.org/10.1164/rccm.201505-1010OC

    Article  CAS  Google Scholar 

  15. Egan JJ (2011) Follow-up and nonpharmacological management of the idiopathic pulmonary fibrosis patient. Eur Respir Rev 20:114–117. https://doi.org/10.1183/09059180.00001811

    Article  CAS  Google Scholar 

  16. Necki M, Pandel A, Urlik M, Antonczyk R, Latos M, Gaweda M, Stacel T, Wajda-Pokrontka M, Zawadzki F, Okienica M, Przybylowski P, Zembala M, Ochman M (2020) The impact of airway complications on survival among lung transplant recipients. Transplant Proc. https://doi.org/10.1016/j.transproceed.2020.03.051

    Article  Google Scholar 

  17. Han L, Liu D, Li Z, Tian N, Han Z, Wang G, Fu Y, Guo Z, Zhu Z, Du C, Tian Y (2015) HOXB1 is a tumor suppressor gene regulated by miR-3175 in glioma. PLoS ONE 10:e0142387. https://doi.org/10.1371/journal.pone.0142387

    Article  CAS  Google Scholar 

  18. Campbell KN, Wong JS, Gupta R, Asanuma K, Sudol M, He JC, Mundel P (2013) Yes-associated protein (YAP) promotes cell survival by inhibiting proapoptotic dendrin signaling. J Biol Chem 288:17057–17062. https://doi.org/10.1074/jbc.C113.457390

    Article  CAS  Google Scholar 

  19. Komuro A, Nagai M, Navin NE, Sudol M (2003) WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 278:33334–33341. https://doi.org/10.1074/jbc.M305597200

    Article  CAS  Google Scholar 

  20. Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Deng CX, Brugge JS, Haber DA (2006) Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA 103:12405–12410. https://doi.org/10.1073/pnas.0605579103

    Article  CAS  Google Scholar 

  21. McDonald CB, McIntosh SK, Mikles DC, Bhat V, Deegan BJ, Seldeen KL, Saeed AM, Buffa L, Sudol M, Nawaz Z, Farooq A (2011) Biophysical analysis of binding of WW domains of the YAP2 transcriptional regulator to PPXY motifs within WBP1 and WBP2 adaptors. Biochemistry 50:9616–9627. https://doi.org/10.1021/bi201286p

    Article  CAS  Google Scholar 

  22. Xie H, Wu L, Deng Z, Huo Y, Cheng Y (2018) Emerging roles of YAP/TAZ in lung physiology and diseases. Life Sci 214:176–183. https://doi.org/10.1016/j.lfs.2018.10.062

    Article  CAS  Google Scholar 

  23. Pan H, Liao M, Song P (2018) YAP/TAZ regulates multiple signal pathways in the genesis and development of hepatic fibrosis. Zhong Nan Da Xue Xue Bao Yi Xue Ban 43:313–319. https://doi.org/10.11817/j.issn.1672-7347.2018.03.013

    Article  Google Scholar 

  24. Byrne AJ, Maher TM, Lloyd CM (2016) Pulmonary macrophages: a new therapeutic pathway in fibrosing lung disease? Trends Mol Med 22:303–316. https://doi.org/10.1016/j.molmed.2016.02.004

    Article  CAS  Google Scholar 

  25. Liu F, Lagares D, Choi KM, Stopfer L, Marinkovic A, Vrbanac V, Probst CK, Hiemer SE, Sisson TH, Horowitz JC, Rosas IO, Fredenburgh LE, Feghali-Bostwick C, Varelas X, Tager AM, Tschumperlin DJ (2015) Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol 308:L344–L357. https://doi.org/10.1152/ajplung.00300.2014

    Article  CAS  Google Scholar 

  26. Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, Wikenheiser-Brokamp KA, Perl AT, Funari VA, Gokey JJ, Stripp BR, Whitsett JA (2016) Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 1:e90558. https://doi.org/10.1172/jci.insight.90558

    Article  Google Scholar 

  27. Noguchi S, Saito A, Mikami Y, Urushiyama H, Horie M, Matsuzaki H, Takeshima H, Makita K, Miyashita N, Mitani A, Jo T, Yamauchi Y, Terasaki Y, Nagase T (2017) TAZ contributes to pulmonary fibrosis by activating profibrotic functions of lung fibroblasts. Sci Rep 7:42595. https://doi.org/10.1038/srep42595

    Article  CAS  Google Scholar 

  28. Gokey JJ, Sridharan A, Xu Y, Green J, Carraro G, Stripp BR, Perl AT, Whitsett JA (2018) Active epithelial Hippo signaling in idiopathic pulmonary fibrosis. JCI Insight. https://doi.org/10.1172/jci.insight.98738

    Article  Google Scholar 

  29. Mitani A, Nagase T, Fukuchi K, Aburatani H, Makita R, Kurihara H (2009) Transcriptional coactivator with PDZ-binding motif is essential for normal alveolarization in mice. Am J Respir Crit Care Med 180:326–338. https://doi.org/10.1164/rccm.200812-1827OC

    Article  CAS  Google Scholar 

  30. Jorgenson AJ, Choi KM, Sicard D, Smith KM, Hiemer SE, Varelas X, Tschumperlin DJ (2017) TAZ activation drives fibroblast spheroid growth, expression of profibrotic paracrine signals, and context-dependent ECM gene expression. Am J Physiol Cell Physiol 312:C277–C285. https://doi.org/10.1152/ajpcell.00205.2016

    Article  Google Scholar 

  31. Mo JS, Park HW, Guan KL (2014) The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep 15:642–656. https://doi.org/10.15252/embr.201438638

    Article  CAS  Google Scholar 

  32. Zhao B, Li L, Lei Q, Guan KL (2010) The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 24:862–874. https://doi.org/10.1101/gad.1909210

    Article  CAS  Google Scholar 

  33. Zhao B, Tumaneng K, Guan KL (2011) The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 13:877–883. https://doi.org/10.1038/ncb2303

    Article  CAS  Google Scholar 

  34. Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27:355–371. https://doi.org/10.1101/gad.210773.112

    Article  CAS  Google Scholar 

  35. Hansen CG, Moroishi T, Guan KL (2015) YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 25:499–513. https://doi.org/10.1016/j.tcb.2015.05.002

    Article  CAS  Google Scholar 

  36. Chan EH, Nousiainen M, Chalamalasetty RB, Schafer A, Nigg EA, Sillje HH (2005) The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24:2076–2086. https://doi.org/10.1038/sj.onc.1208445

    Article  CAS  Google Scholar 

  37. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761. https://doi.org/10.1101/gad.1602907

    Article  CAS  Google Scholar 

  38. Praskova M, Xia F, Avruch J (2008) MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol 18:311–321. https://doi.org/10.1016/j.cub.2008.02.006

    Article  CAS  Google Scholar 

  39. Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, Gayyed MF, Anders RA, Maitra A, Pan D (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130:1120–1133. https://doi.org/10.1016/j.cell.2007.07.019

    Article  CAS  Google Scholar 

  40. Oh H, Irvine KD (2008) In vivo regulation of Yorkie phosphorylation and localization. Development 135:1081–1088. https://doi.org/10.1242/dev.015255

    Article  CAS  Google Scholar 

  41. Liu CY, Zha ZY, Zhou X, Zhang H, Huang W, Zhao D, Li T, Chan SW, Lim CJ, Hong W, Zhao S, Xiong Y, Lei QY, Guan KL (2010) The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 285:37159–37169. https://doi.org/10.1074/jbc.M110.152942

    Article  CAS  Google Scholar 

  42. Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC, Yaffe MB (2000) TAZ: a novel transcriptional co-activator regulated by interactions with 14–3-3 and PDZ domain proteins. EMBO J 19:6778–6791. https://doi.org/10.1093/emboj/19.24.6778

    Article  CAS  Google Scholar 

  43. Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, Sciarretta S, Del Re DP, Zablocki DK, Hsu CP, Lim DS, Isobe M, Sadoshima J (2013) Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med 19:1478–1488. https://doi.org/10.1038/nm.3322

    Article  CAS  Google Scholar 

  44. Hudgens-Haney ME, Ethridge LE, McDowell JE, Keedy SK, Pearlson GD, Tamminga CA, Keshavan MS, Sweeney JA, Clementz BA (2018) Psychosis subgroups differ in intrinsic neural activity but not task-specific processing. Schizophr Res 195:222–230. https://doi.org/10.1016/j.schres.2017.08.023

    Article  Google Scholar 

  45. Thompson BJ, Sahai E (2015) MST kinases in development and disease. J Cell Biol 210:871–882. https://doi.org/10.1083/jcb.201507005

    Article  CAS  Google Scholar 

  46. Oudhoff MJ, Freeman SA, Couzens AL, Antignano F, Kuznetsova E, Min PH, Northrop JP, Lehnertz B, Barsyte-Lovejoy D, Vedadi M, Arrowsmith CH, Nishina H, Gold MR, Rossi FM, Gingras AC, Zaph C (2013) Control of the hippo pathway by Set7-dependent methylation of Yap. Dev Cell 26:188–194. https://doi.org/10.1016/j.devcel.2013.05.025

    Article  CAS  Google Scholar 

  47. Mao B, Hu F, Cheng J, Wang P, Xu M, Yuan F, Meng S, Wang Y, Yuan Z, Bi W (2014) SIRT1 regulates YAP2-mediated cell proliferation and chemoresistance in hepatocellular carcinoma. Oncogene 33:1468–1474. https://doi.org/10.1038/onc.2013.88

    Article  CAS  Google Scholar 

  48. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, Shao DD, Schumacher SE, Weir BA, Vazquez F, Cowley GS, Root DE, Mesirov JP, Beroukhim R, Kuo CJ, Goessling W, Hahn WC (2012) beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151:1457–1473. https://doi.org/10.1016/j.cell.2012.11.026

    Article  CAS  Google Scholar 

  49. Kohli P, Bartram MP, Habbig S, Pahmeyer C, Lamkemeyer T, Benzing T, Schermer B, Rinschen MM (2014) Label-free quantitative proteomic analysis of the YAP/TAZ interactome. Am J Physiol Cell Physiol 306:C805–C818. https://doi.org/10.1152/ajpcell.00339.2013

    Article  CAS  Google Scholar 

  50. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16. https://doi.org/10.1016/j.gene.2005.10.018

    Article  CAS  Google Scholar 

  51. Sibilia M, Kroismayr R, Lichtenberger BM, Natarajan A, Hecking M, Holcmann M (2007) The epidermal growth factor receptor: from development to tumorigenesis. Differentiation 75:770–787. https://doi.org/10.1111/j.1432-0436.2007.00238.x

    Article  CAS  Google Scholar 

  52. Venkataraman T, Frieman MB (2017) The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral Res 143:142–150. https://doi.org/10.1016/j.antiviral.2017.03.022

    Article  CAS  Google Scholar 

  53. Schlessinger J (2004) Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 306:1506–1507. https://doi.org/10.1126/science.1105396

    Article  CAS  Google Scholar 

  54. Reddy BV, Irvine KD (2013) Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev Cell 24:459–471. https://doi.org/10.1016/j.devcel.2013.01.020

    Article  CAS  Google Scholar 

  55. Yang CH, Chou HC, Fu YN, Yeh CL, Cheng HW, Chang IC, Liu KJ, Chang GC, Tsai TF, Tsai SF, Liu HP, Wu YC, Chen YT, Huang SF, Chen YR (2015) EGFR over-expression in non-small cell lung cancers harboring EGFR mutations is associated with marked down-regulation of CD82. Biochim Biophys Acta 1852:1540–1549. https://doi.org/10.1016/j.bbadis.2015.04.020

    Article  CAS  Google Scholar 

  56. Rothschild SI, Gautschi O, Haura EB, Johnson FM (2010) Src inhibitors in lung cancer: current status and future directions. Clin Lung Cancer 11:238–242. https://doi.org/10.3816/CLC.2010.n.030

    Article  CAS  Google Scholar 

  57. Antoniou KM, Margaritopoulos GA, Soufla G, Symvoulakis E, Vassalou E, Lymbouridou R, Samara KD, Kappou D, Spandidos DA, Siafakas NM (2010) Expression analysis of Akt and MAPK signaling pathways in lung tissue of patients with idiopathic pulmonary fibrosis (IPF). J Recept Signal Transduct Res 30:262–269. https://doi.org/10.3109/10799893.2010.489227

    Article  CAS  Google Scholar 

  58. Nho RS, Polunovsky V (2013) Translational control of the fibroblast-extracellular matrix association: an application to pulmonary fibrosis. Translation (Austin) 1:e23934. https://doi.org/10.4161/trla.23934

    Article  Google Scholar 

  59. You B, Yang YL, Xu Z, Dai Y, Liu S, Mao JH, Tetsu O, Li H, Jablons DM, You L (2015) Inhibition of ERK1/2 down-regulates the Hippo/YAP signaling pathway in human NSCLC cells. Oncotarget 6:4357–4368. https://doi.org/10.18632/oncotarget.2974

    Article  Google Scholar 

  60. McGowan M, Kleinberg L, Halvorsen AR, Helland A, Brustugun OT (2017) NSCLC depend upon YAP expression and nuclear localization after acquiring resistance to EGFR inhibitors. Genes Cancer 8:497–504. https://doi.org/10.18632/genesandcancer.136

    Article  CAS  Google Scholar 

  61. Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17:45–51. https://doi.org/10.1016/j.gde.2006.12.007

    Article  CAS  Google Scholar 

  62. Wang Y, Li YP, Paulson C, Shao JZ, Zhang X, Wu M, Chen W (2014) Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci (Landmark Ed) 19:379–407. https://doi.org/10.2741/4214

    Article  CAS  Google Scholar 

  63. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398. https://doi.org/10.1038/nrc2389

    Article  CAS  Google Scholar 

  64. Myung SJ, Yoon JH, Gwak GY, Kim W, Lee JH, Kim KM, Shin CS, Jang JJ, Lee SH, Lee SM, Lee HS (2007) Wnt signaling enhances the activation and survival of human hepatic stellate cells. FEBS Lett 581:2954–2958. https://doi.org/10.1016/j.febslet.2007.05.050

    Article  CAS  Google Scholar 

  65. Park HW, Kim YC, Yu B, Moroishi T, Mo JS, Plouffe SW, Meng Z, Lin KC, Yu FX, Alexander CM, Wang CY, Guan KL (2015) Alternative Wnt signaling activates YAP/TAZ. Cell 162:780–794. https://doi.org/10.1016/j.cell.2015.07.013

    Article  CAS  Google Scholar 

  66. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, Fassina A, Cordenonsi M, Piccolo S (2014) YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell 158:157–170. https://doi.org/10.1016/j.cell.2014.06.013

    Article  CAS  Google Scholar 

  67. van Amerongen R (2012) Alternative Wnt pathways and receptors. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a007914

    Article  Google Scholar 

  68. Cheng JH, She H, Han YP, Wang J, Xiong S, Asahina K, Tsukamoto H (2008) Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 294:G39–49. https://doi.org/10.1152/ajpgi.00263.2007

    Article  CAS  Google Scholar 

  69. Ferrari N, Ranftl R, Chicherova I, Slaven ND, Moeendarbary E, Farrugia AJ, Lam M, Semiannikova M, Westergaard MCW, Tchou J, Magnani L, Calvo F (2019) Dickkopf-3 links HSF1 and YAP/TAZ signalling to control aggressive behaviours in cancer-associated fibroblasts. Nat Commun 10:130. https://doi.org/10.1038/s41467-018-07987-0

    Article  CAS  Google Scholar 

  70. Sun Z, Gong X, Zhu H, Wang C, Xu X, Cui D, Qian W, Han X (2014) Inhibition of Wnt/beta-catenin signaling promotes engraftment of mesenchymal stem cells to repair lung injury. J Cell Physiol 229:213–224. https://doi.org/10.1002/jcp.24436

    Article  CAS  Google Scholar 

  71. Yuan X, Wu H, Xu H, Xiong H, Chu Q, Yu S, Wu GS, Wu K (2015) Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett 369:20–27. https://doi.org/10.1016/j.canlet.2015.07.048

    Article  CAS  Google Scholar 

  72. Liu T, Hu B, Choi YY, Chung M, Ullenbruch M, Yu H, Lowe JB, Phan SH (2009) Notch1 signaling in FIZZ1 induction of myofibroblast differentiation. Am J Pathol 174:1745–1755. https://doi.org/10.2353/ajpath.2009.080618

    Article  CAS  Google Scholar 

  73. Zhang X, Xu Y, Chen JM, Liu C, Du GL, Zhang H, Chen GF, Jiang SL, Liu CH, Mu YP, Liu P (2017) Huang Qi Decoction prevents BDL-induced liver fibrosis through inhibition of Notch signaling activation. Am J Chin Med 45:85–104. https://doi.org/10.1142/S0192415X17500070

    Article  Google Scholar 

  74. Edeling M, Ragi G, Huang S, Pavenstadt H, Susztak K (2016) Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 12:426–439. https://doi.org/10.1038/nrneph.2016.54

    Article  CAS  Google Scholar 

  75. Zhou X, Chen X, Cai JJ, Chen LZ, Gong YS, Wang LX, Gao Z, Zhang HQ, Huang WJ, Zhou H (2015) Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway. Drug Des Devel Ther 9:4599–4611. https://doi.org/10.2147/DDDT.S85399

    Article  CAS  Google Scholar 

  76. Dees C, Tomcik M, Zerr P, Akhmetshina A, Horn A, Palumbo K, Beyer C, Zwerina J, Distler O, Schett G, Distler JH (2011) Notch signalling regulates fibroblast activation and collagen release in systemic sclerosis. Ann Rheum Dis 70:1304–1310. https://doi.org/10.1136/ard.2010.134742

    Article  CAS  Google Scholar 

  77. Rayon T, Menchero S, Nieto A, Xenopoulos P, Crespo M, Cockburn K, Canon S, Sasaki H, Hadjantonakis AK, de la Pompa JL, Rossant J, Manzanares M (2014) Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev Cell 30:410–422. https://doi.org/10.1016/j.devcel.2014.06.019

    Article  CAS  Google Scholar 

  78. Ferretti A, Monaco E, Vadala A (2014) Rotatory instability of the knee after ACL tear and reconstruction. J Orthop Traumatol 15:75–79. https://doi.org/10.1007/s10195-013-0254-y

    Article  Google Scholar 

  79. Leung CY, Zernicka-Goetz M (2013) Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat Commun 4:2251. https://doi.org/10.1038/ncomms3251

    Article  CAS  Google Scholar 

  80. Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16:398–410. https://doi.org/10.1016/j.devcel.2009.02.003

    Article  CAS  Google Scholar 

  81. Home P, Saha B, Ray S, Dutta D, Gunewardena S, Yoo B, Pal A, Vivian JL, Larson M, Petroff M, Gallagher PG, Schulz VP, White KL, Golos TG, Behr B, Paul S (2012) Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc Natl Acad Sci USA 109:7362–7367. https://doi.org/10.1073/pnas.1201595109

    Article  Google Scholar 

  82. Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134:3827–3836. https://doi.org/10.1242/dev.010223

    Article  CAS  Google Scholar 

  83. Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–2102. https://doi.org/10.1242/dev.01801

    Article  CAS  Google Scholar 

  84. Li Y, Hibbs MA, Gard AL, Shylo NA, Yun K (2012) Genome-wide analysis of N1ICD/RBPJ targets in vivo reveals direct transcriptional regulation of Wnt, SHH, and hippo pathway effectors by Notch1. Stem Cells 30:741–752. https://doi.org/10.1002/stem.1030

    Article  CAS  Google Scholar 

  85. Tschaharganeh DF, Chen X, Latzko P, Malz M, Gaida MM, Felix K, Ladu S, Singer S, Pinna F, Gretz N, Sticht C, Tomasi ML, Delogu S, Evert M, Fan B, Ribback S, Jiang L, Brozzetti S, Bergmann F, Dombrowski F, Schirmacher P, Calvisi DF, Breuhahn K (2013) Yes-associated protein up-regulates Jagged-1 and activates the Notch pathway in human hepatocellular carcinoma. Gastroenterology 144(1530–1542):e12. https://doi.org/10.1053/j.gastro.2013.02.009

    Article  CAS  Google Scholar 

  86. Yimlamai D, Christodoulou C, Galli GG, Yanger K, Pepe-Mooney B, Gurung B, Shrestha K, Cahan P, Stanger BZ, Camargo FD (2014) Hippo pathway activity influences liver cell fate. Cell 157:1324–1338. https://doi.org/10.1016/j.cell.2014.03.060

    Article  CAS  Google Scholar 

  87. Tchorz JS, Kinter J, Muller M, Tornillo L, Heim MH, Bettler B (2009) Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology 50:871–879. https://doi.org/10.1002/hep.23048

    Article  CAS  Google Scholar 

  88. Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, Ridgway RA, Seo SS, Spee B, Van Rooijen N, Sansom OJ, Iredale JP, Lowell S, Roskams T, Forbes SJ (2012) Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med 18:572–579. https://doi.org/10.1038/nm.2667

    Article  CAS  Google Scholar 

  89. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17:2054–2060. https://doi.org/10.1016/j.cub.2007.10.039

    Article  CAS  Google Scholar 

  90. Totaro A, Castellan M, Di Biagio D, Piccolo S (2018) Crosstalk between YAP/TAZ and Notch signaling. Trends Cell Biol 28:560–573. https://doi.org/10.1016/j.tcb.2018.03.001

    Article  CAS  Google Scholar 

  91. Song GY, Huang B, Dong HY, Cheng Q, Cui TJ (2016) Broadband focusing acoustic lens based on fractal metamaterials. Sci Rep 6:35929. https://doi.org/10.1038/srep35929

    Article  CAS  Google Scholar 

  92. Gleizes PE, Munger JS, Nunes I, Harpel JG, Mazzieri R, Noguera I, Rifkin DB (1997) TGF-beta latency: biological significance and mechanisms of activation. Stem Cells 15:190–197. https://doi.org/10.1002/stem.150190

    Article  CAS  Google Scholar 

  93. Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB (1997) Latent transforming growth factor-beta: structural features and mechanisms of activation. Kidney Int 51:1376–1382. https://doi.org/10.1038/ki.1997.188

    Article  CAS  Google Scholar 

  94. Wu M, Chen G, Li YP (2016) TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009. https://doi.org/10.1038/boneres.2016.9

    Article  Google Scholar 

  95. Martelossi Cebinelli GC, Paiva Trugilo K, Badaro Garcia S, Brajao de Oliveira K (2016) TGF-beta1 functional polymorphisms: a review. Eur Cytokine Netw 27:81–89. https://doi.org/10.1684/ecn.2016.0382

    Article  CAS  Google Scholar 

  96. Qin Z, Xia W, Fisher GJ, Voorhees JJ, Quan T (2018) YAP/TAZ regulates TGF-beta/Smad3 signaling by induction of Smad7 via AP-1 in human skin dermal fibroblasts. Cell Commun Signal 16:18. https://doi.org/10.1186/s12964-018-0232-3

    Article  CAS  Google Scholar 

  97. Beyer TA, Weiss A, Khomchuk Y, Huang K, Ogunjimi AA, Varelas X, Wrana JL (2013) Switch enhancers interpret TGF-beta and Hippo signaling to control cell fate in human embryonic stem cells. Cell Rep 5:1611–1624. https://doi.org/10.1016/j.celrep.2013.11.021

    Article  CAS  Google Scholar 

  98. Narimatsu M, Samavarchi-Tehrani P, Varelas X, Wrana JL (2015) Distinct polarity cues direct Taz/Yap and TGFbeta receptor localization to differentially control TGFbeta-induced Smad signaling. Dev Cell 32:652–656. https://doi.org/10.1016/j.devcel.2015.02.019

    Article  CAS  Google Scholar 

  99. Grannas K, Arngarden L, Lonn P, Mazurkiewicz M, Blokzijl A, Zieba A, Soderberg O (2015) Crosstalk between Hippo and TGFbeta: subcellular localization of YAP/TAZ/Smad complexes. J Mol Biol 427:3407–3415. https://doi.org/10.1016/j.jmb.2015.04.015

    Article  CAS  Google Scholar 

  100. Zhang J, Smolen GA, Haber DA (2008) Negative regulation of YAP by LATS1 underscores evolutionary conservation of the Drosophila Hippo pathway. Cancer Res 68:2789–2794. https://doi.org/10.1158/0008-5472.CAN-07-6205

    Article  CAS  Google Scholar 

  101. Zhou D, Conrad C, Xia F, Park JS, Payer B, Yin Y, Lauwers GY, Thasler W, Lee JT, Avruch J, Bardeesy N (2009) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16:425–438. https://doi.org/10.1016/j.ccr.2009.09.026

    Article  CAS  Google Scholar 

  102. Zeng F, Miyazawa T, Kloepfer LA, Harris RC (2018) ErbB4 deletion accelerates renal fibrosis following renal injury. Am J Physiol Renal Physiol 314:F773–F787. https://doi.org/10.1152/ajprenal.00260.2017

    Article  CAS  Google Scholar 

  103. Nakatani K, Maehama T, Nishio M, Goto H, Kato W, Omori H, Miyachi Y, Togashi H, Shimono Y, Suzuki A (2017) Targeting the Hippo signalling pathway for cancer treatment. J Biochem 161:237–244. https://doi.org/10.1093/jb/mvw074

    Article  CAS  Google Scholar 

  104. Gibault F, Bailly F, Corvaisier M, Coevoet M, Huet G, Melnyk P, Cotelle P (2017) Molecular features of the YAP inhibitor verteporfin: synthesis of hexasubstituted dipyrrins as potential inhibitors of YAP/TAZ, the downstream effectors of the Hippo pathway. ChemMedChem 12:954–961. https://doi.org/10.1002/cmdc.201700063

    Article  CAS  Google Scholar 

  105. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan D (2012) Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26:1300–1305. https://doi.org/10.1101/gad.192856.112

    Article  CAS  Google Scholar 

  106. Zhao J, Shi W, Chen H, Warburton D (2000) Smad7 and Smad6 differentially modulate transforming growth factor beta -induced inhibition of embryonic lung morphogenesis. J Biol Chem 275:23992–23997. https://doi.org/10.1074/jbc.M002433200

    Article  CAS  Google Scholar 

  107. Piguet PF, Vesin C (1994) Treatment by human recombinant soluble TNF receptor of pulmonary fibrosis induced by bleomycin or silica in mice. Eur Respir J 7:515–518. https://doi.org/10.1183/09031936.94.07030515

    Article  CAS  Google Scholar 

  108. Tan GH, Dutton CM, Bahn RS (1996) Interleukin-1 (IL-1) receptor antagonist and soluble IL-1 receptor inhibit IL-1-induced glycosaminoglycan production in cultured human orbital fibroblasts from patients with Graves’ ophthalmopathy. J Clin Endocrinol Metab 81:449–452. https://doi.org/10.1210/jcem.81.2.8636247

    Article  CAS  Google Scholar 

  109. Sueoka N, Sueoka E, Miyazaki Y, Okabe S, Kurosumi M, Takayama S, Fujiki H (1998) Molecular pathogenesis of interstitial pneumonitis with TNF-alpha transgenic mice. Cytokine 10:124–131. https://doi.org/10.1006/cyto.1997.0267

    Article  CAS  Google Scholar 

  110. Venkatesan N, Pini L, Ludwig MS (2004) Changes in Smad expression and subcellular localization in bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 287:L1342–L1347. https://doi.org/10.1152/ajplung.00035.2004

    Article  CAS  Google Scholar 

  111. Higashiyama H, Yoshimoto D, Okamoto Y, Kikkawa H, Asano S, Kinoshita M (2007) Receptor-activated Smad localisation in bleomycin-induced pulmonary fibrosis. J Clin Pathol 60:283–289. https://doi.org/10.1136/jcp.2006.037606

    Article  Google Scholar 

  112. Newton CA, Zhang D, Oldham JM, Kozlitina J, Ma SF, Martinez FJ, Raghu G, Noth I, Garcia CK (2019) Telomere length and use of immunosuppressive medications in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 200:336–347. https://doi.org/10.1164/rccm.201809-1646OC

    Article  CAS  Google Scholar 

  113. Hozumi H, Hasegawa H, Miyashita K, Yasui H, Suzuki Y, Kono M, Karayama M, Furuhashi K, Hashimoto D, Enomoto N, Fujisawa T, Inui N, Nakamura Y, Yokomura K, Nakamura H, Suda T (2019) Efficacy of corticosteroid and intravenous cyclophosphamide in acute exacerbation of idiopathic pulmonary fibrosis: a propensity score-matched analysis. Respirology 24:792–798. https://doi.org/10.1111/resp.13506

    Article  Google Scholar 

  114. Biondi NL, Samiratedu MM, Highsmith E, Rosenblum A, McGrady K, Knepper S, Bowers R (2019) the impact of interprofessional monitoring and education on the usage of systemic glucocorticoids in acute exacerbations of chronic obstructive pulmonary disease: a retrospective. Medicat Use Rev Cureus 11:e6224. https://doi.org/10.7759/cureus.6224

    Article  Google Scholar 

  115. Obeidat M, Faiz A, Li X, van den Berge M, Hansel NN, Joubert P, Hao K, Brandsma CA, Rafaels N, Mathias R, Ruczinski I, Beaty TH, Barnes KC, Man SFP, Pare PD, Sin DD (2019) The pharmacogenomics of inhaled corticosteroids and lung function decline in COPD. Eur Respir J. https://doi.org/10.1183/13993003.00521-2019

    Article  Google Scholar 

  116. Kulshrestha R, Pandey A, Jaggi A, Bansal S (2020) Beneficial effects of N-acetylcysteine on protease-antiprotease balance in attenuating bleomycin-induced pulmonary fibrosis in rats. Iran J Basic Med Sci 23:396–405. https://doi.org/10.22038/IJBMS.2020.39031.9261

    Article  Google Scholar 

  117. Salisbury ML, Conoscenti CS, Culver DA, Yow E, Neely ML, Bender S, Hartmann N, Palmer SM, Leonard TB, Investigators I-PR (2020) Antifibrotic drug use in patients with IPF: data from the IPF-PRO registry. Ann Am Thorac Soc. https://doi.org/10.1513/AnnalsATS.201912-880OC

    Article  Google Scholar 

  118. Gercel G, Aksu B, Ozkanli S, Uzun H, Aksu F, Ozatman E, Durakbasa CU (2020) Investigation of Bosentan’s effects on pulmonary contusion created by blunt thoracic trauma in rats. Eur J Pediatr Surg 30:71–78. https://doi.org/10.1055/s-0039-1697908

    Article  Google Scholar 

  119. Zhao R, Fallon TR, Saladi SV, Pardo-Saganta A, Villoria J, Mou H, Vinarsky V, Gonzalez-Celeiro M, Nunna N, Hariri LP, Camargo F, Ellisen LW, Rajagopal J (2014) Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells. Dev Cell 30:151–165. https://doi.org/10.1016/j.devcel.2014.06.004

    Article  CAS  Google Scholar 

  120. Liu Z, Wu H, Jiang K, Wang Y, Zhang W, Chu Q, Li J, Huang H, Cai T, Ji H, Yang C, Tang N (2016) MAPK-Mediated YAP activation controls mechanical-tension-induced pulmonary alveolar regeneration. Cell Rep 16:1810–1819. https://doi.org/10.1016/j.celrep.2016.07.020

    Article  CAS  Google Scholar 

  121. Bassat E, Mutlak YE, Genzelinakh A, Shadrin IY, Baruch Umansky K, Yifa O, Kain D, Rajchman D, Leach J, Riabov Bassat D, Udi Y, Sarig R, Sagi I, Martin JF, Bursac N, Cohen S, Tzahor E (2017) The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547:179–184. https://doi.org/10.1038/nature22978

    Article  CAS  Google Scholar 

  122. Ni X, Tao J, Barbi J, Chen Q, Park BV, Li Z, Zhang N, Lebid A, Ramaswamy A, Wei P, Zheng Y, Zhang X, Wu X, Vignali P, Yang CP, Li H, Pardoll D, Lu L, Pan D, Pan F (2018) YAP is essential for Treg-mediated suppression of antitumor immunity. Cancer Discov 8:1026–1043. https://doi.org/10.1158/2159-8290.CD-17-1124

    Article  CAS  Google Scholar 

  123. Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D (2016) Toll receptor-mediated Hippo signaling controls innate immunity in Drosophila. Cell 164:406–419. https://doi.org/10.1016/j.cell.2015.12.029

    Article  CAS  Google Scholar 

  124. Boro M, Singh V, Balaji KN (2016) Mycobacterium tuberculosis-triggered Hippo pathway orchestrates CXCL1/2 expression to modulate host immune responses. Sci Rep 6:37695. https://doi.org/10.1038/srep37695

    Article  CAS  Google Scholar 

  125. Wang S, Xie F, Chu F, Zhang Z, Yang B, Dai T, Gao L, Wang L, Ling L, Jia J, van Dam H, Jin J, Zhang L, Zhou F (2017) YAP antagonizes innate antiviral immunity and is targeted for lysosomal degradation through IKKvarepsilon-mediated phosphorylation. Nat Immunol 18:733–743. https://doi.org/10.1038/ni.3744

    Article  CAS  Google Scholar 

  126. Geng J, Yu S, Zhao H, Sun X, Li X, Wang P, Xiong X, Hong L, Xie C, Gao J, Shi Y, Peng J, Johnson RL, Xiao N, Lu L, Han J, Zhou D, Chen L (2018) Publisher Correction: the transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat Immunol 19:1036. https://doi.org/10.1038/s41590-018-0055-9

    Article  CAS  Google Scholar 

  127. Geng J, Yu S, Zhao H, Sun X, Li X, Wang P, Xiong X, Hong L, Xie C, Gao J, Shi Y, Peng J, Johnson RL, Xiao N, Lu L, Han J, Zhou D, Chen L (2017) The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells. Nat Immunol 18:800–812. https://doi.org/10.1038/ni.3748

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by the funds from Zhejiang Provincial Science and Technology Projects (Grant No. 2018C3710) and Medical Science and Technology Project of Zhejiang Province (Grant No. 2020KY321).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to data analysis, drafting and revising the article, gave final approval of the version to be published, and agreed to be accountable for all aspects of the work.

Corresponding authors

Correspondence to Chu Zhang or Guangmao Yu.

Ethics declarations

Conflict of interest

The authors declare that they no conflicts of interest.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Ma, Z., Wang, H. et al. YAP/TAZ affects the development of pulmonary fibrosis by regulating multiple signaling pathways. Mol Cell Biochem 475, 137–149 (2020). https://doi.org/10.1007/s11010-020-03866-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03866-9

Keywords

Navigation