Skip to main content

Advertisement

Log in

The anxiolytic effects of atorvastatin and simvastatin on dietary-induced increase in homocysteine levels in rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effects of atorvastatin and simvastatin on behavioral manifestations that followed hyperhomocysteinemia induced by special dietary protocols enriched in methionine and deficient in B vitamins (B6, B9, B12) by means of alterations in anxiety levels in rats. Simultaneously, we investigated the alterations of oxidative stress markers in rat hippocampus induced by applied dietary protocols. Furthermore, considering the well-known antioxidant properties of statins, we attempted to assess their impact on major markers of oxidative stress and their possible beneficial role on anxiety-like behavior effect in rats. The 4-week-old male Wistar albino rats were divided (eight per group) according to basic dietary protocols: standard chow, methionine-enriched, and methionine-enriched vitamins B (B6, B9, B12) deficient. Each dietary protocol (30 days) included groups with atorvastatin (3 mg/kg/day i.p.) and simvastatin (5 mg/kg/day i.p.). The behavioral testing was performed in the open field and elevated plus maze tests. Parameters of oxidative stress (index of lipid peroxidation, superoxide dismutase, catalase activity, glutathione) were determined in hippocampal tissue samples following decapitation after anesthesia. Methionine-load dietary protocols induced increased oxidative stress in rat hippocampus, which was accompanied by anxiogenic behavioral manifestations. The methionine-enriched diet with restricted vitamins B intake induced more pronounced anxiogenic effect, as well as increased oxidative stress compared to the methionine-load diet with normal vitamins B content. Simultaneous administration of statins showed beneficial effects by means of both decreased parameters of oxidative stress and attenuation of anxiety. The results obtained with simvastatin were more convincible compared to atorvastatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Met:

Methionine

SAM:

S-adenosylmethionine

SAH:

S-adenosylhomocysteine

Hcy:

Homocysteine

MS:

Methionine synthase

GSH:

Glutathione

SH:

Sulfhydril

SOD:

Superoxide dismutase

CAT:

Catalase

OF:

Open field

EPM:

Elevated plus maze

TBARS:

Thiobarbituric acid reactive substance

MDA:

Malondialdehyde

References

  1. Škovierová H, Vidomanová E, Mahmood S, Sopková J, Drgová A, Červeňová T, Halašova E, Lehotský J (2016) The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci 17(10):1733

    Article  CAS  PubMed Central  Google Scholar 

  2. Lu SC (2000) S-Adenosylmethionine. Int J Biochem Cell Biol 32:391–395

    Article  CAS  PubMed  Google Scholar 

  3. Petras M, Tatarkova Z, Kovalska M, Mokra D, Dobrota D, Lehotsky J, Drgova A (2014) Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J Physio Pharmacol 65(1):15–23

    CAS  Google Scholar 

  4. Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    Article  CAS  PubMed  Google Scholar 

  5. Reynolds EH, Carney MW, Toone BK (1984) Methylation and mood. Lancet 2:196–198

    Article  CAS  PubMed  Google Scholar 

  6. Türksoy N, Bilici R, Yalçıner A, Ozdemir Y, Ornek I, Tufan AE, Kara A (2014) Vitamin B12, folate, and homocysteine levels in patients with obsessive-compulsive disorder. Neuropsychiatr Dis Treat 10:1671–1675

    PubMed  PubMed Central  Google Scholar 

  7. Lehmann M, Gottfries C, Regland G B (1999) Identification of Cognitive impairment in the elderly: Homocysteine is an farly marker. Dement Geriatr Cogn Disord 10:12–20

    Article  CAS  PubMed  Google Scholar 

  8. Kahler SG, Fahey MC (2003) Metabolic disorders and mental retardation. Am J Med Genet Part 117:31–41

    Article  Google Scholar 

  9. Chamberlin ME, Ubagai T, Mudd SH, Wilson WG, Leonard JV, Chou JY (1996) Demyelination of the brain is associated with methionine adenosyltransferase I/III deficiency. JCI 98(4):1021–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oulhaj A, Refsum H, Beaumont H, Williams J, King E, Jacoby R, Smith AD (2010) Homocysteine as a predictor of cognitive decline in Alzheimer’s disease. Int J Geriatr Psychiatry 25:82–90

    PubMed  Google Scholar 

  11. Blandini F, Fancellu R, Martignoni E, Mangiagalli A, Pacchetti C, Samuele A, Nappi G (2001) Plasma homocysteine and l-dopa metabolism in patients with Parkinson disease. Clin Chem 47(6):1102–1104

    CAS  PubMed  Google Scholar 

  12. Hankey GJ, Eikelboom JW (2001) Homocysteine and stroke. Curr Opin Neurol 14(1):95–102

    Article  CAS  PubMed  Google Scholar 

  13. Obeid R, Mc Caddon A, Herrmann W (2007) The role of hyperhomocysteinemia and B vitamin deficiency in neurological and psychiatric diseases. Clin Chem Lab Med 45(12):1590–1606

    CAS  PubMed  Google Scholar 

  14. Moustafa AA, Hewedi DH, Eissa AM, Frydecka D, Misiak B (2014) Homocysteine levels in schizophrenia and affective disorders—focus on cognition. Front Behav Neurosci 8:343

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gu P, DeFina LF, Leonard D, John S, Weiner MF, Brown ES (2012) Relationship between serum homocysteine levels and depressive symptoms: the Cooper Center Longitudinal Study. J Clin Psychiatr 73:691–695

    Article  CAS  Google Scholar 

  16. Folstein M, Liu T, Peter I, Buell J, Arsenault L, Scott T et al (2007) The homocysteine hypothesis of depression. Am J Psychiatr 164:861–867

    Article  PubMed  Google Scholar 

  17. Tiemeier H, van Tuijl HR, Hofman A, Meijer J, Kiliaan AJ, Breteler MB (2002) Vitamin B12, folate, and homocysteine in depression: the Rotterdam study. Am J Psychiatr 159:2099–2101

    Article  PubMed  Google Scholar 

  18. Chung KH, Chiou HY, Chen YH (2017) Associations between serum homocysteine levels and anxiety and depression among children and adolescents in Taiwan. Sci Rep 7(1):8330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Atmaca M, Tezcan E, Kuloglu M, Kirtas O, Ustandag B (2005) Serum folate and homocysteine levels in patients with obsessive–compulsive disorder. Psychiatry Clin Neurosci 59(5):616–620

    Article  CAS  PubMed  Google Scholar 

  20. Levine J, Timinsky I, Vishne T et al (2008) Elevated serum homocysteine levels in male patients with PTSD. Depress Anxiety 25(11):154–157

    Article  Google Scholar 

  21. Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS et al (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10:433–443

    Article  CAS  PubMed  Google Scholar 

  22. Jakubowski H, Perla-Kaján J, Finnell RH, Cabrera RM, Wang H, Gupta S, Kruger WD, Kraus JP, Shih DM (2009) Genetic or nutritional disorders in homocysteine or folate metabolism increase protein N-homocysteinylation in mice. FASEB J 23:1721–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parsons RB, Waring RH, Ramsden DB, Williams AC (1998) In vitro effect of the cysteine metabolites homocysteic acid, homocysteine and cysteic acid upon human neuronal cell lines. Neurotoxicology 19:599–603

    CAS  PubMed  Google Scholar 

  24. Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zou CG, Banerjee R (2005) Homocysteine and redox signaling. Antioxid Redox Signal 7:547–559

    Article  CAS  PubMed  Google Scholar 

  26. Perna AF, Ingrosso D, De Santo NG (2003) Homocysteine and oxidative stress. Amino Acids 25:409–417

    Article  CAS  PubMed  Google Scholar 

  27. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    Article  CAS  PubMed  Google Scholar 

  28. Weber GF (1994) The pathophysiology of reactive oxygen intermediates in the central nervous system. Med Hypotheses 43(4):223–230

    Article  CAS  PubMed  Google Scholar 

  29. Jara-Prado A, Ortega-Vazquez A, Martinez-Ruano L, Rios C, Santamaria A (2003) Homocysteine-induced brain lipid peroxidation: effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibition. Neurotox Res 5(4):237–243

    Article  PubMed  Google Scholar 

  30. Lebel C (1991) Oxygen radicals: Common mediators of neurotoxicity. Neurotox Teratol 13:341–346

    Article  CAS  Google Scholar 

  31. Herken H, Akyol O, Yilmaz HR, Tutkun H, Savas HA, Ozen ME, Kalenderoglu A, Gulec M (2006) Nitric oxide, adenosine deaminase, xanthine oxidase and superoxide dismutase in patients with panic disorder: alterations by antidepressant treatment. Hum Psychopharmacol 21:53–59

    Article  CAS  PubMed  Google Scholar 

  32. Herken H, Gurel A, Selek S, Armutcu F, Ozen ME, Bulut M, Kap O, Yumru M, Savas HA, Akyol O (2007) Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res 38:247–252

    Article  CAS  PubMed  Google Scholar 

  33. Ersan S, Bakir S, Erdal Ersan E, Dogan O (2006) Examination of free radical metabolism and antioxidant defence system elements in patients with obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatr 30:1039–1042

    Article  CAS  Google Scholar 

  34. Kodydkova J, Vavrova L, Zeman M, Jirak R, Macasek J, Stankova B, Tvrzicka E, Zak A (2009) Antioxidative enzymes and increased oxidative stress in depressive women. Clin Biochem 42:1368–1374

    Article  CAS  PubMed  Google Scholar 

  35. Ersoy MA, Selek S, Celik H, Erel O, Kaya MC, Savas HA, Herken H (2008) Role of oxidative and antioxidative parameters in etiopathogenesis and prognosis of panic disorder. Int J Neurosci 118:1025–1037

    Article  CAS  PubMed  Google Scholar 

  36. Selek S, Herken H, Bulut M, Ceylan MF, Celik H, Savas HA, Erel O (2008) Oxidative imbalance in obsessive compulsive disorder patients: a total evaluation of oxidant-antioxidant status. Prog Neuropsychopharmacol Biol Psychiatr 32:487–491

    Article  CAS  Google Scholar 

  37. Atmaca M, Kuloglu M, Tezcan E, Ustundag B (2008) Antioxidant enzyme and malondialdehyde levels in patients with social phobia. Psychiatr Res 159:95–100

    Article  CAS  Google Scholar 

  38. Galecki P, Szemraj J, Bienkiewicz M, Florkowski A, Galecka E (2009) Lipid peroxidation and antioxidant protection in patients during acute depressive episodes and in remission after fluoxetine treatment. Pharmacol Rep 61:436–447

    Article  CAS  PubMed  Google Scholar 

  39. Viggiano A, Viggiano E, Monda M, Ingrosso D, Perna AF, De Luca B (2012) Methionine-enriched diet decreases hippocampal antioxidant defences and impairs spontaneous behaviour and long term potentiation in rats. Brain Res 1471:66–74

    Article  CAS  PubMed  Google Scholar 

  40. Hrnčić D, Mikić J, Rašić-Marković A, Velimirović M, Stojković T, Obrenović R, Rankov-Petrović B, Šušić V, Djurić D, Petronijević N, Stanojlović O (2016) Anxiety-related behavior in hyperhomocysteinemia induced by methionine nutritional overload in rats: role of the brain oxidative stress. Can J Physiol Pharmacol 94(10):1074–1082

    Article  CAS  PubMed  Google Scholar 

  41. Hovatta I, Juhila J, Donner J (2010) Oxidative stress in anxiety and comorbid disorders. Neurosci Res 68(4):261–275

    Article  CAS  PubMed  Google Scholar 

  42. Rosic G, Joksimovic J, Selakovic D, Jakovljevic V, Živkovic V, Srejovic I, Djuric M, Djuric D (2018) The beneficial effects of sulfur-containing amino acids on cisplatin-induced cardiotoxicity and neurotoxicity in rodents. Curr Med Chem 25(3):391–403

    Article  CAS  PubMed  Google Scholar 

  43. Lakhan V (2010) Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J 9:42

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vignes M, Maurice T, Lanté F, Nedjar M, Thethi K, Guiramand J, Récasens M (2006) Anxiolytic properties of green tea polyphenol (−)-epigallocatechin gallate (EGCG). Brain Res 1110:102–115

    Article  CAS  PubMed  Google Scholar 

  45. McFarlane SI, Muniyappa R, Francisco R, Sowers JR (2002) Pleiotropic effects of statins: lipid reduction and beyond. J Clin Endocrinol Metab 87(4):1451–1458

    Article  CAS  PubMed  Google Scholar 

  46. Murrow JR, Sher S, Ali S, Uphoff I, Patel R, Porkert M et al (2012) The differential effect of statins on oxidative stress and endothelial function: atorvastatin versus pravastatin. J Clin Lipidol 6(1):42–49

    Article  PubMed  Google Scholar 

  47. Van der Most PJ, Dolga AM, Nijholt IM, Luiten PGM, Eisel ULM (2009) Statins: mechanisms of neuroprotection. Prog Neurobiol 88(1):64–75

    Article  CAS  PubMed  Google Scholar 

  48. Mohammadi MT, Amini R, Jahanbakhsh Z, Shekarforoush S (2013) Effects of atorvastatin on the hypertension-induced oxidative stress in the rat brain. IBJ 17(3):152–157

    CAS  PubMed  PubMed Central  Google Scholar 

  49. ElBatsh MM (2015) Antidepressant-like effect of simvastatin in diabetic rats. Can J Physiol Pharmacol 93(8):649–656

    Article  CAS  PubMed  Google Scholar 

  50. Lin PY, Chang AY, Lin TK (2014) Simvastatin treatment exerts antidepressant-like effect in rats exposed to chronic mild stress. Pharmacol Biochem Behav 124:174–179

    Article  CAS  PubMed  Google Scholar 

  51. Can ÖD, Ulupınar E, Özkay ÜD, Yegin B, Öztürk Y (2012) The effect of simvastatin treatment on behavioral parameters, cognitive performance, and hippocampal morphology in rats fed a standard or a high-fat diet. Behav Pharmacol 23:582–592

    Article  CAS  PubMed  Google Scholar 

  52. Citraro R, Chimirri S, Aiello R, Gallelli L, Trimboli F, Britti D, De Sarro G, Russo E (2014) Protective effects of some statins on epileptogenesis and depressive-like behavior in WAG/Rij rats, a genetic animal model of absence epilepsy. Epilepsia 55(8):1284–1291

    Article  CAS  PubMed  Google Scholar 

  53. Anupama GM, Shrishail HV, Shashikant T (2013) Evaluation of antidepressant activity of simvastatin, lovastatin and atorvastatin in male swiss mice - an experimental study. Int J Drug Dev Res 5(2):102–108

    Google Scholar 

  54. Bjelland I, Tell G, Vollset S, Refsuem H, Ueland P (2003) Folate, vitamin B12, homocysteine, and the MTHFR 677CўT polymorphism in anxiety and depression, the Hordaland Homocysteine Study. Arch Gen Psychiatr 60(6):618–626

    Article  CAS  PubMed  Google Scholar 

  55. Sodha NR, Boodhwani M, Ramlawi B, Clements RT, Mieno S, Feng J, Xu SH, Bianchi S, Sellke FW (2008) Atorvastatin increases myocardial indices of oxidative stress in a porcine model of hypercholesterolemia and chronic ischemia. J Card Surg 23(4):312–320

    Article  PubMed  PubMed Central  Google Scholar 

  56. Parle M, Singh N (2007) Reversal of memory deficits by atorvastatin and simvastatin in rats. Yakugaku Zasshi 127(7):1125–1137

    Article  CAS  PubMed  Google Scholar 

  57. Prut L, Belzung C (2003) The open field as a paradigm to measure the effect of drugs on anxiety-like behaviours: a review. Eur J Pharmacol 463(1–3):3–33

    Article  CAS  PubMed  Google Scholar 

  58. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  CAS  PubMed  Google Scholar 

  59. Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 24(3):525–529

    Article  CAS  PubMed  Google Scholar 

  60. Selakovic D, Joksimovic J, Obradovic D, Milovanovic D, Djuric M, Rosic G (2016) The adverse effects of exercise and supraphysiological dose of testosterone-enanthate (TE) on exploratory activity in elevated plus maze (EPM) test—indications for using total exploratory activity (TEA) as a new parameter for exploratory activity estimation in EPM. Neuroendocrinol Lett 37(5):101–106

    Google Scholar 

  61. Li KW (2011) Neuroproteomics. Humana Press Springer, New York

    Book  Google Scholar 

  62. Wohlenberg M, Almeida D, Bokowski L, Medeiros N, Agostini F, Funchal C, Dani C (2014) Antioxidant activity of grapevine leaf extracts against oxidative stress induced by carbon tetrachloride in cerebral cortex, hippocampus and cerebellum of rats. Antioxidants 3(2):200–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  64. Misra HP, Fridovich I (1972) The role of superoxide anion in the auto-oxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  65. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195(1):133–140

    CAS  PubMed  Google Scholar 

  66. Ellman GL (1959) Tissue sulphydryl group. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  67. Lowry OH, Rosebrough NL, Farr AL, Randall RI (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  68. Streck EL, Vieira PS, Wannmacher CM, Dutra-Filho CS, Wajner M, Wyse AT (2003) In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metab Brain Dis 18(2):147–154

    Article  CAS  PubMed  Google Scholar 

  69. Nikolić T (2017) The effects of hyperhomocysteinemia on myocardial function, coronary circulation and redox status of the isolated heart rat: role of hydroxymethyl glutaryl inhibitor coenzyme-A (HMG-COA) reductase. Dissertation, University of Kragujevac

  70. Kamath AF, Chauhan AK, Kisucka J, Dole VS, Loscalzo J, Handy DE, Wagner DD (2006) Elevated levels of homocysteine compromise blood-brain barrier integrity in mice. Blood 107(2):591–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ridker PM, Shih J, Cook TJ et al (2002) Plasma homocysteine concentration, statin therapy, and the risk of first acute coronary events. Circulation 105:1776–1779

    Article  CAS  PubMed  Google Scholar 

  72. Dierkes J, Luley C, Westphal S (2007) Effect of lipid-lowering and anti-hypertensive drugs on plasma homocysteine levels. Vasc Health Risk Manag 3(1):99–108

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jiang S, Chen Q, Venners SA, Zhong G, Hsu YH, Xing H, Wang X, Xu X (2013) Effect of simvastatin on plasma homocysteine levels and its modification by MTHFR C677T polymorphism in Chinese patients with primary hyperlipidemia. Cardiovasc Ther 31(4):27–33

    Article  CAS  Google Scholar 

  74. Ludman A, Venugopal V, Yellon DM, Hausenloy DJ (2009) Statins and cardioprotection—more than just lipid lowering? Pharmacol Ther 122(1):30–43

    Article  CAS  PubMed  Google Scholar 

  75. Clarke AT, Johnson PC, Hall GC, Ford I, Mills PR (2016) High dose atorvastatin associated with increased risk of significant hepatotoxicity in comparison to simvastatin in UK GPRD cohort. PLoS ONE 11(3):e0151587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Selakovic D, Joksimovic J, Zaletel I, Puskas N, Matovic M, Rosic G (2017) The opposite effects of nandrolone decanoate and exercise on anxiety levels in rats may involve alterations in hippocampal parvalbumin-positive interneurons. PLoS ONE 12(12):e0189595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hrnčić D, Rašić- Marković A, Mikić J, Demchuk G, Leković J, Šušić V, Macut D, Djurić D, Stanojlović O (2013) Anxiety-related behavior in adult rats after acute homocysteine thiolactone treatment. Clin Neurophysiol 124(7):14–15

    Article  Google Scholar 

  78. Kilic FS, Ozatik Y, Kaygisiz B, Baydemir C, Erol K (2012) Acute antidepressant and anxiolytic effects of simvastatin and its mechanisms in rats. Neurosciences 17(1):39–43

    PubMed  Google Scholar 

  79. Pemminati S, Nandini Colaco MB, Patchava D, Shivaprakash G, Sheetal Ullal D, Gopalakrishna HN, Rathnakar UP, Shenoy AK (2012) Role of statins in animal models of anxiety in Normo-cholesterolemic rats. J Pharm Res 5(7):3764–3766

    CAS  Google Scholar 

  80. Young-Xu Y, Chan KA, Liao JK, Ravid S, Blatt CM (2003) Long-term statin use and psychological well-being. J Am Coll Cardiol 42(4):690–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Koladiya RU, Jaggi AS, Singh N, Sharma BK (2008) Ameliorative role of Atorvastatin and Pitavastatin in L-Methionine induced vascular dementia in rats. BMC Pharmacol 8:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu W, Zhao Y, Zhang X, Ji J (2018) Simvastatin ameliorates cognitive impairments via inhibition of oxidative stress induced apoptosis of hippocampal cells through the ERK/AKT signaling pathway in a rat model of senile dementia. Mol Med Rep 17(1):1885–1892

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Faculty of Medical Sciences (JP 01/13), University of Kragujevac, Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Jakovljevic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mijailovic, N., Selakovic, D., Joksimovic, J. et al. The anxiolytic effects of atorvastatin and simvastatin on dietary-induced increase in homocysteine levels in rats. Mol Cell Biochem 452, 199–217 (2019). https://doi.org/10.1007/s11010-018-3425-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3425-6

Keywords

Navigation