Skip to main content

Advertisement

Log in

SOX2-mediated inhibition of miR-223 contributes to STIM1 activation in phenylephrine-induced hypertrophic cardiomyocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Stromal interaction molecule 1 (STIM1) is the key molecule responsible for store-operated Ca2+ entry (SOCE). Numerous studies have demonstrated that STIM1 levels appeared to be enhanced during cardiac hypertrophy. However, the mechanism underlining this process remains to be clarified. In this study, phenylephrine (PE) was employed to establish a model of hypertrophic neonatal rat cardiomyocytes (HNRCs) in vitro, and low expression of primary and mature miR-223 was detected in PE-induced HNRCs. Our results have revealed that downregulation of miR-223 by PE contributed to the increase of STIM1, which in turn induced cardiac hypertrophy. As expected, overexpression of miR-223 could prevent the increase in cell surface and reduce the mRNA levels of ANF and BNP in cardiomyocytes. To address the mechanism triggering downregulation of miR-223 under PE, we demonstrated that PE-induced inhibition of GSK-3β activity led to the activation of β-catenin, which initiates the transcription of SOX2. Increased expression of SOX2 occupied the promoter region of primary miR-223 and suppressed its transcription. Therefore, miR-223 appears to be a promising candidate for inhibiting cardiomyocyte hypertrophy, and miR-223/STIM1 axis might be one of interesting targets for the clinical treatment of hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bisping E, Wakula P, Poteser M, Heinzel FR (2014) Targeting cardiac hypertrophy: toward a causal heart failure therapy. J Cardiovasc Pharmacol 64:293–305. doi:10.1097/FJC.0000000000000126

    Article  CAS  PubMed  Google Scholar 

  2. Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262. doi:10.1016/j.yjmcc.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  3. Tojyo Y, Morita T, Nezu A, Tanimura A (2014) Key components of store-operated Ca2+ entry in non-excitable cells. J Pharmacol Sci 125:340–346

    Article  CAS  PubMed  Google Scholar 

  4. Majewski L, Kuznicki J (2015) SOCE in neurons: signaling or just refilling? Biochim Biophys Acta 1853:1940–1952. doi:10.1016/j.bbamcr.2015.01.019

    Article  CAS  PubMed  Google Scholar 

  5. Pan Z, Brotto M, Ma J (2014) Store-operated Ca2+ entry in muscle physiology and diseases. BMB Rep 47:69–79

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lopez JJ, Albarran L, Gomez LJ, Smani T, Salido GM, Rosado JA (2016) Molecular modulators of store-operated calcium entry. Biochim Biophys Acta 1863:2037–2043. doi:10.1016/j.bbamcr.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  7. Luo X, Hojayev B, Jiang N, Wang ZV, Tandan S, Rakalin A, Rothermel BA, Gillette TG, Hill JA (2012) STIM1-dependent store-operated Ca(2)(+) entry is required for pathological cardiac hypertrophy. J Mol Cell Cardiol 52:136–147. doi:10.1016/j.yjmcc.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  8. Voelkers M, Salz M, Herzog N, Frank D, Dolatabadi N, Frey N, Gude N, Friedrich O, Koch WJ, Katus HA, Sussman MA, Most P (2010) Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J Mol Cell Cardiol 48:1329–1334. doi:10.1016/j.yjmcc.2010.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohba T, Watanabe H, Murakami M, Sato T, Ono K, Ito H (2009) Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem Biophys Res Commun 389:172–176. doi:10.1016/j.bbrc.2009.08.117

    Article  CAS  PubMed  Google Scholar 

  10. Xue J, Chi Y, Chen Y, Huang S, Ye X, Niu J, Wang W, Pfeffer LM, Shao ZM, Wu ZH, Wu J (2016) MiRNA-621 sensitizes breast cancer to chemotherapy by suppressing FBXO11 and enhancing p53 activity. Oncogene 35:448–458. doi:10.1038/onc.2015.96

    Article  CAS  PubMed  Google Scholar 

  11. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  CAS  PubMed  Google Scholar 

  12. Gladka MM, da Costa Martins PA, De Windt LJ (2012) Small changes can make a big difference—microRNA regulation of cardiac hypertrophy. J Mol Cell Cardiol 52:74–82. doi:10.1016/j.yjmcc.2011.09.015

    Article  CAS  PubMed  Google Scholar 

  13. Ganesan J, Ramanujam D, Sassi Y, Ahles A, Jentzsch C, Werfel S, Leierseder S, Loyer X, Giacca M, Zentilin L, Thum T, Laggerbauer B, Engelhardt S (2013) MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 127:2097–2106. doi:10.1161/CIRCULATIONAHA.112.000882

    Article  CAS  PubMed  Google Scholar 

  14. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618. doi:10.1038/nm1582

    Article  CAS  PubMed  Google Scholar 

  15. Wang K, Lin ZQ, Long B, Li JH, Zhou J, Li PF (2012) Cardiac hypertrophy is positively regulated by MicroRNA miR-23a. J Biol Chem 287:589–599. doi:10.1074/jbc.M111.266940

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Huang X, Xin HB, Fu M, Xue A, Wu ZH (2015) TRAF family member-associated NF-kappaB activator (TANK) inhibits genotoxic nuclear factor kappaB activation by facilitating deubiquitinase USP10-dependent deubiquitination of TRAF6 ligase. J Biol Chem 290:13372–13385. doi:10.1074/jbc.M115.643767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niu J, Xue A, Chi Y, Xue J, Wang W, Zhao Z, Fan M, Yang CH, Shao ZM, Pfeffer LM, Wu J, Wu ZH (2016) Induction of miRNA-181a by genotoxic treatments promotes chemotherapeutic resistance and metastasis in breast cancer. Oncogene 35:1302–1313. doi:10.1038/onc.2015.189

    Article  CAS  PubMed  Google Scholar 

  18. Zhao J, Cheng F, Wang Y, Arteaga CL, Zhao Z (2016) Systematic prioritization of druggable mutations in approximately 5000 genomes across 16 cancer types using a structural genomics-based approach. Mol Cell Proteomics 15:642–656. doi:10.1074/mcp.M115.053199

    Article  CAS  PubMed  Google Scholar 

  19. Feng HJ, Ouyang W, Liu JH, Sun YG, Hu R, Huang LH, Xian JL, Jing CF, Zhou MJ (2014) Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy. Braz J Med Biol Res 47:361–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wasserman WW, Sandelin A (2004) Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5:276–287. doi:10.1038/nrg1315

    Article  CAS  PubMed  Google Scholar 

  21. Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, Martin JF (2011) Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332:458–461. doi:10.1126/science.1199010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blankesteijn WM, van de Schans VA, ter Horst P, Smits JF (2008) The Wnt/frizzled/GSK-3 beta pathway: a novel therapeutic target for cardiac hypertrophy. Trends Pharmacol Sci 29:175–180. doi:10.1016/j.tips.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  23. Collins HE, Zhu-Mauldin X, Marchase RB, Chatham JC (2013) STIM1/Orai1-mediated SOCE: current perspectives and potential roles in cardiac function and pathology. Am J Physiol Heart Circ Physiol 305:H446–H458. doi:10.1152/ajpheart.00104.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Putney JW (2013) Alternative forms of the store-operated calcium entry mediators, STIM1 and Orai1. Curr Top Membr 71:109–123. doi:10.1016/B978-0-12-407870-3.00005-6

    Article  CAS  PubMed  Google Scholar 

  25. Baba Y, Matsumoto M, Kurosaki T (2015) Signals controlling the development and activity of regulatory B-lineage cells. Int Immunol 27:487–493. doi:10.1093/intimm/dxv027

    Article  CAS  PubMed  Google Scholar 

  26. Pozo-Guisado E, Martin-Romero FJ (2013) The regulation of STIM1 by phosphorylation. Commun Integr Biol 6:e26283. doi:10.4161/cib.26283

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lang F, Eylenstein A, Shumilina E (2012) Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium 52:347–354. doi:10.1016/j.ceca.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  28. Zhao FY, Han J, Chen XW, Wang J, Wang XD, Sun JG, Chen ZT (2016) miR-223 enhances the sensitivity of non-small cell lung cancer cells to erlotinib by targeting the insulin-like growth factor-1 receptor. Int J Mol Med 38:183–191. doi:10.3892/ijmm.2016.2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang W, Lan X, Li D, Li T, Lu S (2015) MiR-223 targeting MAFB suppresses proliferation and migration of nasopharyngeal carcinoma cells. BMC Cancer 15:461. doi:10.1186/s12885-015-1464-x

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aziz F (2016) The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell Immunol 303:1–6. doi:10.1016/j.cellimm.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  31. Taibi F, Metzinger-Le Meuth V, Massy ZA, Metzinger L (2014) miR-223: an inflammatory oncomiR enters the cardiovascular field. Biochim Biophys Acta 1842:1001–1009. doi:10.1016/j.bbadis.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  32. Wang YS, Zhou J, Hong K, Cheng XS, Li YG (2015) MicroRNA-223 displays a protective role against cardiomyocyte hypertrophy by targeting cardiac troponin I-interacting kinase. Cell Physiol Biochem 35:1546–1556. doi:10.1159/000373970

    Article  CAS  PubMed  Google Scholar 

  33. Yang L, Li Y, Wang X, Mu X, Qin D, Huang W, Alshahrani S, Nieman M, Peng J, Essandoh K, Peng T, Wang Y, Lorenz J, Soleimani M, Zhao ZQ, Fan GC (2016) Overexpression of miR-223 tips the balance of pro- and anti-hypertrophic signaling cascades toward physiologic cardiac hypertrophy. J Biol Chem 291:15700–15713. doi:10.1074/jbc.M116.715805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. ter Horst P, Smits JF, Blankesteijn WM (2012) The Wnt/Frizzled pathway as a therapeutic target for cardiac hypertrophy: where do we stand? Acta Physiol (Oxf) 204:110–117. doi:10.1111/j.1748-1716.2011.02309.x

    Article  Google Scholar 

  35. De Windt LJ, Lim HW, Haq S, Force T, Molkentin JD (2000) Calcineurin promotes protein kinase C and c-Jun NH2-terminal kinase activation in the heart. Cross-talk between cardiac hypertrophic signaling pathways. J Biol Chem 275:13571–13579

    Article  PubMed  Google Scholar 

  36. Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J (2000) The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 275:14466–14475

    Article  CAS  PubMed  Google Scholar 

  37. Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, Woodgett J, Kilter H, Force T (2003) Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci USA 100:4610–4615. doi:10.1073/pnas.0835895100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feng R, Wen J (2015) Overview of the roles of Sox2 in stem cell and development. Biol Chem 396:883–891. doi:10.1515/hsz-2014-0317

    Article  CAS  PubMed  Google Scholar 

  39. Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, Kawamura A, Nakamura K, Takeuchi T, Tanabe M (2007) An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129:617–631. doi:10.1016/j.cell.2007.02.048

    Article  CAS  PubMed  Google Scholar 

  40. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123:819–831. doi:10.1016/j.cell.2005.09.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Chinese Natural Science Foundation Grants (81303132), the Science and Technology Development Special Fund of Shanghai Health and Family Planning Commission (ZK2015A17), the Science and Technology Development Special Fund of Zhoupu Hospital (ZP2014A-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-ming Li.

Ethics declarations

Conflict of interest

All authors declare they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (XLSX 24 kb)

11010_2017_3209_MOESM3_ESM.pdf

Supplementary material 3 Supplementary Figure 1. miR-223 expression value in neonatal rat cardiomyocytes from 5-day TCA induction model (GEO/GSE38599). Supplementary Figure 2. Mature miR-223 expression level was examined by qPCR after infection of mir-223. (PDF 921 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZH., Luo, J., Li, Hx. et al. SOX2-mediated inhibition of miR-223 contributes to STIM1 activation in phenylephrine-induced hypertrophic cardiomyocytes. Mol Cell Biochem 443, 47–56 (2018). https://doi.org/10.1007/s11010-017-3209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3209-4

Keywords

Navigation