Skip to main content
Log in

Suppression of phosphorylated MAPK and caspase 3 by carbon dioxide

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Although CO2 is produced during the oxidation of different substrates in all types of cells, the role of this gas in the regulation of cellular function is not clearly understood. Since changes in several signal transduction as well as apoptotic, anti-apoptotic, and other proteins are known to modify cellular function, we investigated if some of these proteins are altered upon incubating the rat hind leg skeletal muscle in a medium enriched with CO2 (1000–1200 ppm) for 30 min. CO2 was observed to depress phosphorylated levels of ERK1 (P44) and ERK2 (P42) without affecting the unphosphorylated content of these MAPK proteins. On the other hand, no change in p38 MAPK protein was found but the content of its degradation product 30 kDa proteins (both phosphorylated and unphosphorylated) was decreased. No alterations in the content of other signaling proteins (PKA and Akt), inflammatory molecule (TNF-α), and vascular endothelial growth factor (VEGF) were seen upon exposure of the muscle to CO2. The content for apoptotic and anti-apoptotic proteins (Bad and Bcl2), except for a decrease in caspase 3, were also not affected by CO2. These results indicate that CO2 may serve as a gasotransmitter to regulate cellular function by depressing MAPK and caspase 3 activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  2. Li L, Hsu A, Moore PK (2009) Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation—a tale of three gases! Pharmacol Ther 123:386–400

    Article  CAS  PubMed  Google Scholar 

  3. Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide: a putative neural messenger. Science 259:3818–3840

    Article  Google Scholar 

  4. Yong QC, Cheong JL, Hua F, Deng LW, Khoo YM, Lee HS, Perry A, Wood M, Whiteman M, Bian JS (2011) Regulation of heart function by endogenous gaseous mediators-crosstalk between nitric oxide and hydrogen sulfide. Antioxid Redox Signal 14:2081–2091

    Article  CAS  PubMed  Google Scholar 

  5. Veeranki S, Tyagi SC (2015) Role of hydrogen sulfide in skeletal muscle biology and metabolism. Nitric Oxide 46:66–71

    Article  CAS  PubMed  Google Scholar 

  6. Radawski D, Dabney JM, Daugherty RM Jr, Haddy FJ, Scott JB (1972) Local effects of CO2 on vascular resistances and weight of the dog forelimb. Am J Physiol 222:439–443

    CAS  PubMed  Google Scholar 

  7. Diji A, Greenfield AD (1960) The local effect of carbon dioxide on human blood vessels. Am Heart J 60:907–914

    Article  CAS  PubMed  Google Scholar 

  8. Dulig BR (1973) Changes in microvascular diameter and oxygen tension induced by carbon dioxide. Circ Res 32:370–376

    Article  Google Scholar 

  9. Ito T, Moore JI, Koss MC (1989) Topical application of CO2 increases skin blood flow. J Invest Dermatol 93:259–262

    Article  CAS  PubMed  Google Scholar 

  10. Toda N, Hatano Y, Mori K (1989) Mechanisms underlying response to hypercapnia and bicarbonate of isolated dog cerebral arteries. Am J Physiol 257:H141–H146

    CAS  PubMed  Google Scholar 

  11. Iadecola C (1992) Does nitric oxide mediate the increases in cerebral blood flow elicited by hypercapnia? Proc Natl Acad Sci USA 89:3913–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eliades D, Weiss HR (1986) Effect of hypercapnia on coronary circulation. Cardiovasc Res 20:127–133

    Article  CAS  PubMed  Google Scholar 

  13. Blair DA, Glover WE, McArrdle L (1960) The mechanism of peripheral vasodilation following carbon dioxide inhalation in man. Clin Sci 19:407–423

    Google Scholar 

  14. Hsu P, Shibata M, Leffler CW (1993) Prostanoid synthesis in response to high CO2 in newborn pig brain microvascular endothelial cells. Am J Physiol 264:H1485–H1492

    CAS  PubMed  Google Scholar 

  15. Wagerie LC, Mishra OP (1988) Mechanism of CO2 response in cerebral arteries of the newborn pig: role of phospholipase, cyclooxygenase, and lipoxygenase pathways. Circ Res 62:1019–1026

    Article  Google Scholar 

  16. Wang Q, Paulson OB, Lassen NA (1992) Effect of nitric oxide blockade by NG-nitro-l-arginine on cerebral blood flow response to changes in carbon dioxide tension. J Cereb Blood Flow Metab 12:947–953

    Article  CAS  PubMed  Google Scholar 

  17. Parfenova H, Shibata M, Zuckerman S, Leffler CW (1994) CO2 and cerebral circulation in newborn pigs: cyclic nucleotides and prostanoids in vascular regulation. Am J Physiol 266:H1494–H1501

    CAS  PubMed  Google Scholar 

  18. Irikura K, Maynard KI, Lee WS, Moskowitz MA (1994) l-NNA decreases cortical hyperemia and brain cGMP levels following CO2 inhalation in Sprague-Dawley rats. Am J Physiol 267:H837–H843

    CAS  PubMed  Google Scholar 

  19. Irie H, Tatsumi T, Takamiya M, Zen K, Takahashi T, Azuma A, Tateishi K, Nomura T, Hayashi H, Nakajima N, Okigaki M, Matsubara H (2005) Carbon dioxide-rich water bathing enhances collateral blood flow in ischemic hindlimb via mobilization of endothelial progenitor cells and activation of NO-cGMP system. Circulation 111:1523–1529

    Article  PubMed  Google Scholar 

  20. Mohrman DE, Regal RR (1988) Relation of blood flow to VO2, PO2, and PCO2 in dog gastrocnemius muscle. Am J Physiol 255:H1004–H1010

    CAS  PubMed  Google Scholar 

  21. Ohta T, Yasuda A, Mitsuda H (1989) Effect of carbon dioxide on conservation of vasoactivity of canine mesenteric arteries. Transplantation 47:740–742

    Article  CAS  PubMed  Google Scholar 

  22. Dogliotti G, Galliera E, Iorio E, De Valserra M, Solimene U, Corsi MM (2011) Effect of immersion in CO2-enriched water on free radical release and total antioxidant status in peripheral arterial occlusive disease. Int Angiol 30:12–17

    CAS  PubMed  Google Scholar 

  23. Bolevich S, Kogan AH, Zivkovic V, Djuric D, Novikov AA, Vorobyev SI, Jakovljevic V (2016) Protective role of carbon dioxide (CO2) in generation of reactive oxygen species. Mol Cell Biochem 411:317–330

    Article  CAS  PubMed  Google Scholar 

  24. Dodgson SJ, Forster RE 2nd, Storey BT, Mela L (1980) Mitochondrial carbonic anhydrase. Proc Natl Acad Sci USA 77:5562–5566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Toda N, Hatano Y, Mori K (1989) Mechanisms underlying response to hypercapnia and bicarbonate of isolated dog cerebral arteries. Am J Physiol 257:H141–H146

    CAS  PubMed  Google Scholar 

  26. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628

    Article  CAS  PubMed  Google Scholar 

  27. Wuttke MS, Buck J, Levin LR (2001) Bicarbonate-regulated soluble adenylyl cyclase. J Pancreas 2(4 Suppl):154–158

    CAS  Google Scholar 

  28. Hashimoto M, Yamamoto N (1985) Decrease in heart rates by artificial CO2 hot spring bathing is inhibited by beta1-adrenoceptor blockade in anesthetized rats. J Appl Physiol 96:226–232

    Article  Google Scholar 

  29. Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9:265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nishimura N, Sugenoya J, Matsumoto T, Kato M, Sakakibara H, Nishiyama T, Inukai Y, Okagawa T, Ogata A (2002) Effects of repeated carbon dioxide-rich water bathing on core temperature, cutaneous blood flow and thermal sensation. Eur J Appl Physiol 87:337–342

    Article  CAS  PubMed  Google Scholar 

  31. Shao Q, Ren B, Saini HK, Netticadan T, Takeda N, Dhalla NS (2005) Sarcoplasmic reticulum Ca2-transport and gene expression in congestive heart failure are modified by imidapril treatment. Am J Physiol Heart Circ Physiol 288:H1674–H1682

    Article  CAS  PubMed  Google Scholar 

  32. Das S, Babick AP, Xu Y-J, Takeda N, Rodriguez-Levya D, Dhalla NS (2010) TNF-α-mediated signal transduction pathway is a major determinant of apoptosis in dilated cardiomyopathy. J Cell Mol Med 14:1988–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu Y-J, Saini HK, Zhang M, Elimban V, Dhalla NS (2006) MAPK activation and apoptotic alterations in hearts subjected to calcium paradox are attenuated by taurine. Cardiovasc Res 72:163–174

    Article  CAS  PubMed  Google Scholar 

  34. Nishida E, Gotoh Y (1993) The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18:128–131

    Article  CAS  PubMed  Google Scholar 

  35. Johnson GL, Vaillancourt RR (1994) Sequential protein kinase reactions controlling cell growth and differentiation. Curr Opin Cell Biol 6:230–238

    Article  CAS  PubMed  Google Scholar 

  36. Dhalla NS, Müller AL (2010) Protein kinases as drug development targets for heart disease therapy. Pharmaceuticals 3:2111–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu Y-J, Saini HK, Zhang M, Elimban V, Dhalla NS (2006) MAPK activation and apoptotic alterations in hearts subjected to calcium paradox are attenuated by taurine. Cardiovasc Res 72:163–174

    Article  CAS  PubMed  Google Scholar 

  38. Sugden PH, Clerk A (1998) “Stress-responsive” mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83:345–352

    Article  CAS  PubMed  Google Scholar 

  39. Srivastava RK, Srivastava AR, Korsmeyer SJ, Nesterova M, Cho-Chung YS, Longo DL (1998) Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol Cell Biol 18:3509–3517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rajesh KG, Suzuki R, Maeda H, Yamamoto M, Yutong X, Sasaguri S (2005) Hydrophilic bile salt ursodeoxycholic acid protects myocardium against reperfusion injury in a PI3K/Akt dependent pathway. J Mol Cell Cardiol 39:766–776

    Article  CAS  PubMed  Google Scholar 

  41. Miyauchi T, Miyata M, Ikeda Y, Akasaki Y, Hamada N, Shirasawa T, Furusho Y, Tei C (2012) Waon therapy upregulates Hsp90 and leads to angiogenesis through the Akt-endothelial nitric oxide synthase pathway in mouse hindlimb ischemia. Circ J 76:1712–1721

    Article  CAS  PubMed  Google Scholar 

  42. Bishopric NH, Andreka P, Slepak T, Webster KA (2001) Molecular mechanisms of apoptosis in the cardiac myocyte. Curr Opin Pharmacol 1:141–150

    Article  CAS  PubMed  Google Scholar 

  43. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  44. Reeve JL, Duffy AM, O’Brien T, Samali A (2005) Don’t lose heart—therapeutic value of apoptosis prevention in the treatment of cardiovascular disease. J Cell Mol Med 9:609–622

    Article  CAS  PubMed  Google Scholar 

  45. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ (2002) Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci USA 99:6252–6256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Laugwitz KL, Moretti A, Weig HJ, Gillitzer A, Pinkernell K, Ott T, Pragst I, Städele C, Seyfarth M, Schömig A, Ungerer M (2001) Blocking caspase-activated apoptosis improves contractility in failing myocardium. Hum Gene Ther 12:2051–2063

    Article  CAS  PubMed  Google Scholar 

  47. Ruetten H, Badorff C, Ihling C, Zeiher AM, Dimmeler S (2001) Inhibition of caspase-3 improves contractile recovery of stunned myocardium, independent of apoptosis-inhibitory effects. J Am Coll Cardiol 38:2063–2070

    Article  CAS  PubMed  Google Scholar 

  48. Dhalla NS, Camargo RO, Elimban V, Dhadial RS, Xu Y-J (2017) Role of skeletal muscle angiogenesis in peripheral artery disease. In: Mehta JL, Mathur P, Dhalla NS (eds) Therapeutic implications of angiogenesis. Springer, Switzerland

    Google Scholar 

Download references

Acknowledgements

The infrastructure support for this study was provided by the St. Boniface Hospital Research Foundation, Winnipeg, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayan Elimban.

Ethics declarations

Conflict of interest

This is to declare that the research was funded by Mitsubishi Rayon Cleansui Co., Ltd., Tokyo, Japan and that Y.-J. Xu, V. Elimban and N.S. Dhalla had no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YJ., Elimban, V. & Dhalla, N.S. Suppression of phosphorylated MAPK and caspase 3 by carbon dioxide. Mol Cell Biochem 436, 23–28 (2017). https://doi.org/10.1007/s11010-017-3073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3073-2

Keywords

Navigation