Skip to main content
Log in

C14orf28 downregulated by miR-519d contributes to oncogenicity and regulates apoptosis and EMT in colorectal cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

C14orf28 [alias dopamine receptor-interacting protein (DRIP1)] is belonging to the family of DRIPs. However, the function of C14orf28 in cancer remains unclear. Herein, we found that C14orf28 was upregulated in colorectal cancer tissues compared to the adjacent non-tumor tissues. Overexpression of C14orf28 promoted the cellular proliferation, migration, invasion of colorectal cancer cells. In addition, C14orf28 inhibited apoptosis and promoted the EMT process. To explore the mechanism of dysregulation, C14orf28 was identified to be a target of miR-519d by targeting its 3′UTR. Furthermore, in agreement, C14orf28 overexpression counteracted the inhibitory effect of miR-519d. Together, these results evidenced that C14orf28 downregulated by miR-519d contributes to tumorigenesis and might provide new potential targets for colorectal cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parkin DM (2001) Global cancer statistics in the year 2000. Lancet Oncol 2:533–543. doi:10.1016/S1470-2045(01)00486-7

    Article  CAS  PubMed  Google Scholar 

  2. Okugawa Y, Grady WM, Goel A (2015) Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology 149(1204–1225):e12. doi:10.1053/j.gastro.2015.07.011

    Google Scholar 

  3. Zhan L, Kerr JR, Lafuente MJ, Maclean A, Chibalina MV, Liu B, Burke B, Bevan S, Nasir J (2011) Altered expression and coregulation of dopamine signalling genes in schizophrenia and bipolar disorder. Neuropathol Appl Neurobiol 37:206–219. doi:10.1111/j.1365-2990.2010.01128.x

    Article  CAS  PubMed  Google Scholar 

  4. Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707. doi:10.1105/tpc.107.057380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S, Eerola-Rautio J, Pohja M, Kinnunen E, Murros K, Auvinen P (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358. doi:10.1002/mds.26069

    Article  PubMed  Google Scholar 

  6. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(1469–1480):e12. doi:10.1016/j.cell.2016.11.018

    Google Scholar 

  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  8. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482:347–355. doi:10.1038/nature10888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun K, Lai EC (2013) Adult-specific functions of animal microRNAs. Nat Rev Genet 14:535–548. doi:10.1038/nrg3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. doi:10.1038/nature02871

    Article  CAS  PubMed  Google Scholar 

  11. Costa FF (2005) Non-coding RNAs: new players in eukaryotic biology. Gene 357:83–94. doi:10.1016/j.gene.2005.06.019

    Article  CAS  PubMed  Google Scholar 

  12. Kanaan Z, Roberts H, Eichenberger MR, Billeter A, Ocheretner G, Pan J, Rai SN, Jorden J, Williford A, Galandiuk S (2013) A plasma microRNA panel for detection of colorectal adenomas: a step toward more precise screening for colorectal cancer. Ann Surg 258:400–408. doi:10.1097/SLA.0b013e3182a15bcc

    Article  PubMed  Google Scholar 

  13. Aslam MI, Taylor K, Pringle JH, Jameson JS (2009) MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg 96:702–710. doi:10.1002/bjs.6628

    Article  CAS  PubMed  Google Scholar 

  14. Bovell LC, Shanmugam C, Putcha BD, Katkoori VR, Zhang B, Bae S, Singh KP, Grizzle WE, Manne U (2013) The prognostic value of microRNAs varies with patient race/ethnicity and stage of colorectal cancer. Clin Cancer Res 19:3955–3965. doi:10.1158/1078-0432.CCR-12-3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hou YY, Cao WW, Li L, Li SP, Liu T, Wan HY, Liu M, Li X, Tang H (2011) MicroRNA-519d targets MKi67 and suppresses cell growth in the hepatocellular carcinoma cell line QGY-7703. Cancer Lett 307:182–190. doi:10.1016/j.canlet.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  16. Pang Y, Mao H, Shen L, Zhao Z, Liu R, Liu P (2014) MiR-519d represses ovarian cancer cell proliferation and enhances cisplatin-mediated cytotoxicity in vitro by targeting XIAP. Onco Targets Ther 7:587–597. doi:10.2147/OTT.S60289

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ding J, Huang F, Wu G, Han T, Xu F, Weng D, Wu C, Zhang X, Yao Y, Zhu X (2015) MiR-519d-3p suppresses invasion and migration of trophoblast cells via targeting MMP-2. PLoS ONE 10:e0120321. doi:10.1371/journal.pone.0120321

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhou JY, Zheng SR, Liu J, Shi R, Yu HL, Wei M (2016) MiR-519d facilitates the progression and metastasis of cervical cancer through direct targeting Smad7. Cancer Cell Int 16:21. doi:10.1186/s12935-016-0298-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qiang R, Wang F, Shi LY, Liu M, Chen S, Wan HY, Li YX, Li X, Gao SY, Sun BC, Tang H (2011) Plexin-B1 is a target of miR-214 in cervical cancer and promotes the growth and invasion of HeLa cells. Int J Biochem Cell Biol 43:632–641. doi:10.1016/j.biocel.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  20. Wan HY, Li QQ, Zhang Y, Tian W, Li YN, Liu M, Li X, Tang H (2014) MiR-124 represses vasculogenic mimicry and cell motility by targeting amotL1 in cervical cancer cells. Cancer Lett 355:148–158. doi:10.1016/j.canlet.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  21. Zhao JL, Zhang L, Guo X, Wang JH, Zhou W, Liu M, Li X, Tang H (2015) miR-212/132 downregulates SMAD2 expression to suppress the G1/S phase transition of the cell cycle and the epithelial to mesenchymal transition in cervical cancer cells. IUBMB Life 67:380–394. doi:10.1002/iub.1381

    Article  CAS  PubMed  Google Scholar 

  22. Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, Wang XH, Du J, Liu YX, Sun BC (2010) Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 51:545–556. doi:10.1002/hep.23311

    Article  CAS  PubMed  Google Scholar 

  23. Long MJ, Wu FX, Li P, Liu M, Li X, Tang H (2012) MicroRNA-10a targets CHL1 and promotes cell growth, migration and invasion in human cervical cancer cells. Cancer Lett 324:186–196. doi:10.1016/j.canlet.2012.05.022

    Article  CAS  PubMed  Google Scholar 

  24. Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol 247(Suppl 2):Ii3–Ii10. doi:10.1007/pl00007758

    PubMed  Google Scholar 

  25. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899. doi:10.1016/j.cell.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866. doi:10.1038/nrc1997

    Article  CAS  PubMed  Google Scholar 

  27. Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K, Nakashima R, Kitade Y, Naoe T (2010) Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther 17:398–408. doi:10.1038/cgt.2009.88

    Article  CAS  PubMed  Google Scholar 

  28. Ma H, Pan JS, Jin LX, Wu J, Ren YD, Chen P, Xiao C, Han J (2016) MicroRNA-17 ~ 92 inhibits colorectal cancer progression by targeting angiogenesis. Cancer Lett 376:293–302. doi:10.1016/j.canlet.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  29. Deng B, Wang B, Fang J, Zhu X, Cao Z, Lin Q, Zhou L, Sun X (2016) MiRNA-203 suppresses cell proliferation, migration and invasion in colorectal cancer via targeting of EIF5A2. Sci Rep 6:28301. doi:10.1038/srep28301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lv H, Zhang Z, Wang Y, Li C, Gong W, Wang X (2016) MicroRNA-92a promotes colorectal cancer cell growth and migration by inhibiting KLF4. Oncol Res 23:283–290. doi:10.3727/096504016X14562725373833

    Article  Google Scholar 

  31. Zhao J, Zhang Y, Zhao G (2015) Emerging role of microRNA-21 in colorectal cancer. Cancer Biomark 15:219–226. doi:10.3233/CBM-150468

    Article  PubMed  Google Scholar 

  32. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454. doi:10.1038/nrc822

    Article  CAS  PubMed  Google Scholar 

  34. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83. doi:10.1038/35000025

    Article  CAS  PubMed  Google Scholar 

  35. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890. doi:10.1016/j.cell.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  36. Tsai CH, Tsai HC, Huang HN, Hung CH, Hsu CJ, Fong YC, Hsu HC, Huang YL, Tang CH (2015) Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells. Oncotarget 6:258–270. doi:10.18632/oncotarget.2724

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos: 81572790, 91629302, 91029714, 31270818), National Postdoctoral Science Foundation of China (2015M581307), and the Natural Science Foundation of Tianjin (No. 12JCZDJC25100, 14JCYBJC26400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Tang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Hu, Y., Liu, Y. et al. C14orf28 downregulated by miR-519d contributes to oncogenicity and regulates apoptosis and EMT in colorectal cancer. Mol Cell Biochem 434, 197–208 (2017). https://doi.org/10.1007/s11010-017-3049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3049-2

Keywords

Navigation