Skip to main content

Advertisement

Log in

A fragmented form of annexin A1 is secreted from C2C12 myotubes by electric pulse-induced contraction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The main function of annexin A1 (ANXA1), a member of the annexin superfamily, is to bind to cellular membranes in a Ca2+-dependent manner. In skeletal muscle, ANXA1 is thought to be involved in the repair of damaged membrane tissue and in the migration of muscle cells. We hypothesized that ANXA1 is one of the myokines secreted during muscle contractions to accelerate the repair of cell damage after contraction. Here we performed cell contractions by electric pulse stimulation; the results revealed that a fragmented form of ANXA1 was cleaved by calpain and selectively secreted from skeletal muscle cells by contraction. We therefore realized that muscle-contraction-induced calpain-dependent ANXA1 fragmentation has a wound-healing effect on damaged cells. This suggested that not the intact form but rather fragmented ANXA1 is a contraction-induced myokine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Perretti M, D’Acquisto F (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 9:62–70. doi:10.1038/nri2470

    Article  CAS  PubMed  Google Scholar 

  2. Williams SL, Milne IR, Bagley CJ, Gamble JR, Vadas MA, Pitson SM, Khew-Goodall Y (2010) A proinflammatory role for proteolytically cleaved annexin A1 in neutrophil transendothelial migration. J Immunol 185:3057–3063. doi:10.4049/jimmunol.1000119

    Article  CAS  PubMed  Google Scholar 

  3. Sakaguchi M, Murata H, Sonegawa H, Sakaguchi Y, Futami J, Kitazoe M, Yamada H, Huh NH (2007) Truncation of annexin A1 is a regulatory lever for linking epidermal growth factor signaling with cytosolic phospholipase A2 in normal and malignant squamous epithelial cells. J Biol Chem 282:35679–35686. doi:10.1074/jbc.M707538200

    Article  CAS  PubMed  Google Scholar 

  4. Huo XF, Zhang JW (2005) Annexin1 regulates the erythroid differentiation through ERK signaling pathway. Biochem Biophys Res Commun 331:1346–1352. doi:10.1016/j.bbrc.2005.04.049

    Article  CAS  PubMed  Google Scholar 

  5. Vergnolle N, Comera C, Bueno L (1995) Annexin 1 is overexpressed and specifically secreted during experimentally induced colitis in rats. Eur J Biochem 232:603–610

    Article  CAS  PubMed  Google Scholar 

  6. Voigt T, Sebald HJ, Schoenauer R, Levano S, Girard T, Hoppeler HH, Babiychuk EB, Draeger A (2013) Annexin A1 is a biomarker of T-tubular repair in skeletal muscle of nonmyopathic patients undergoing statin therapy. FASEB J 27:2156–2164. doi:10.1096/fj.12-219345

    Article  CAS  PubMed  Google Scholar 

  7. Bizzarro V, Belvedere R, Dal Piaz F, Parente L, Petrella A (2012) Annexin A1 induces skeletal muscle cell migration acting through formyl peptide receptors. PLoS One 7:e48246. doi:10.1371/journal.pone.0048246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. D’Acunto CW, Gbelcova H, Festa M, Ruml T (2014) The complex understanding of Annexin A1 phosphorylation. Cell Signal 26:173–178. doi:10.1016/j.cellsig.2013.09.020

    Article  PubMed  Google Scholar 

  9. Bizzarro V, Fontanella B, Franceschelli S, Pirozzi M, Christian H, Parente L, Petrella A (2010) Role of Annexin A1 in mouse myoblast cell differentiation. J Cell Physiol 224:757–765. doi:10.1002/jcp.22178

    Article  CAS  PubMed  Google Scholar 

  10. Matsumura CY, Menezes de Oliveira B, Durbeej M, Marques MJ (2013) Isobaric Tagging-Based Quantification for Proteomic Analysis: a comparative study of spared and affected muscles from mice at the early phase of dystrophy. PLoS One 8:e65831. doi:10.1371/journal.pone.0065831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Holland A, Dowling P, Zweyer M, Swandulla D, Henry M, Clynes M, Ohlendieck K (2013) Proteomic profiling of cardiomyopathic tissue from the aged mdx model of Duchenne muscular dystrophy reveals a drastic decrease in laminin, nidogen and annexin. Proteomics 13:2312–2323. doi:10.1002/pmic.201200578

    Article  CAS  PubMed  Google Scholar 

  12. Chan XC, McDermott JC, Siu KW (2007) Identification of secreted proteins during skeletal muscle development. J Proteome Res 6:698–710. doi:10.1021/pr060448k

    Article  CAS  PubMed  Google Scholar 

  13. Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I (2010) Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics 9:2482–2496. doi:10.1074/mcp.M110.002113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wein S, Fauroux M, Laffitte J, de Nadai P, Guaini C, Pons F, Comera C (2004) Mediation of annexin 1 secretion by a probenecid-sensitive ABC-transporter in rat inflamed mucosa. Biochem Pharmacol 67:1195–1202. doi:10.1016/j.bcp.2003.11.015

    Article  CAS  PubMed  Google Scholar 

  15. Goto-Inoue N, Yamada K, Inagaki A, Furuichi Y, Ogino S, Manabe Y, Setou M, Fujii NL (2013) Lipidomics analysis revealed the phospholipid compositional changes in muscle by chronic exercise and high-fat diet. Sci Rep 3:3267. doi:10.1038/srep03267

    Article  PubMed Central  PubMed  Google Scholar 

  16. Goto-Inoue N, Manabe Y, Miyatake S, Ogino S, Morishita A, Hayasaka T, Masaki N, Setou M, Fujii NL (2012) Visualization of dynamic change in contraction-induced lipid composition in mouse skeletal muscle by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Bioanal Chem 403:1863–1871. doi:10.1007/s00216-012-5809-x

    Article  CAS  PubMed  Google Scholar 

  17. Manabe Y, Miyatake S, Takagi M, Nakamura M, Okeda A, Nakano T, Hirshman MF, Goodyear LJ, Fujii NL (2012) Characterization of an acute muscle contraction model using cultured C2C12 myotubes. PLoS One 7:e52592. doi:10.1371/journal.pone.0052592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Manabe Y, Takagi M, Nakamura-Yamada M, Goto-Inoue N, Taoka M, Isobe T, Fujii NL (2014) Redox proteins are constitutively secreted by skeletal muscle. J Physiol Sci 64:401–409. doi:10.1007/s12576-014-0334-7

    Article  CAS  PubMed  Google Scholar 

  19. Ritchie RH, Gordon JM, Woodman OL, Cao AH, Dusting GJ (2005) Annexin-1 peptide Anx-1(2-26) protects adult rat cardiac myocytes from cellular injury induced by simulated ischaemia. Br J Pharmacol 145:495–502. doi:10.1038/sj.bjp.0706211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Fujita H, Nedachi T, Kanzaki M (2007) Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp Cell Res 313:1853–1865. doi:10.1016/j.yexcr.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  21. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593. doi:10.1038/nri2567

    Article  CAS  PubMed  Google Scholar 

  22. Guescini M, Guidolin D, Vallorani L, Casadei L, Gioacchini AM, Tibollo P, Battistelli M, Falcieri E, Battistin L, Agnati LF, Stocchi V (2010) C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res 316:1977–1984. doi:10.1016/j.yexcr.2010.04.006

    Article  CAS  PubMed  Google Scholar 

  23. Qin C, Buxton KD, Pepe S, Cao AH, Venardos K, Love JE, Kaye DM, Yang YH, Morand EF, Ritchie RH (2013) Reperfusion-induced myocardial dysfunction is prevented by endogenous annexin-A1 and its N-terminal-derived peptide Ac-ANX-A1(2-26). Br J Pharmacol 168:238–252. doi:10.1111/j.1476-5381.2012.02176.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hartwig S, Raschke S, Knebel B, Scheler M, Irmler M, Passlack W, Muller S, Hanisch FG, Franz T, Li X, Dicken HD, Eckardt K, Beckers J, de Angelis MH, Weigert C, Haring HU, Al-Hasani H, Ouwens DM, Eckel J, Kotzka J, Lehr S (2014) Secretome profiling of primary human skeletal muscle cells. Biochim Biophys Acta 1844:1011–1017. doi:10.1016/j.bbapap.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  25. Lim LH, Pervaiz S (2007) Annexin 1: the new face of an old molecule. FASEB J 21:968–975. doi:10.1096/fj.06-7464rev

    Article  CAS  PubMed  Google Scholar 

  26. Rescher U, Goebeler V, Wilbers A, Gerke V (2006) Proteolytic cleavage of annexin 1 by human leukocyte elastase. Biochim Biophys Acta 1763:1320–1324. doi:10.1016/j.bbamcr.2006.08.041

    Article  CAS  PubMed  Google Scholar 

  27. Cheng X, Zhang X, Gao Q, Ali Samie M, Azar M, Tsang WL, Dong L, Sahoo N, Li X, Zhuo Y, Garrity AG, Wang X, Ferrer M, Dowling J, Xu L, Han R, Xu H (2014) The intracellular Ca(2)(+) channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat Med 20:1187–1192. doi:10.1038/nm.3611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. La M, D’Amico M, Bandiera S, Di Filippo C, Oliani SM, Gavins FN, Flower RJ, Perretti M (2001) Annexin 1 peptides protect against experimental myocardial ischemia-reperfusion: analysis of their mechanism of action. FASEB J 15:2247–2256. doi:10.1096/fj.01-0196com

    Article  CAS  PubMed  Google Scholar 

  29. Leikina E, Melikov K, Sanyal S, Verma SK, Eun B, Gebert C, Pfeifer K, Lizunov VA, Kozlov MM, Chernomordik LV (2013) Extracellular annexins and dynamin are important for sequential steps in myoblast fusion. J Cell Biol 200:109–123. doi:10.1083/jcb.201207012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ritchie RH, Sun X, Bilszta JL, Gulluyan LM, Dusting GJ (2003) Cardioprotective actions of an N-terminal fragment of annexin-1 in rat myocardium in vitro. Eur J Pharmacol 461:171–179. doi:10.1016/s0014-2999(03)01314-1

    Article  CAS  PubMed  Google Scholar 

  31. Belvedere R, Bizzarro V, Popolo A, Dal Piaz F, Vasaturo M, Picardi P, Parente L, Petrella A (2014) Role of intracellular and extracellular annexin A1 in migration and invasion of human pancreatic carcinoma cells. BMC Cancer 14:961. doi:10.1186/1471-2407-14-961

    Article  PubMed Central  PubMed  Google Scholar 

  32. Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2014) Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med. doi:10.1038/nm.3710

    PubMed Central  PubMed  Google Scholar 

  33. Han R (2011) Muscle membrane repair and inflammatory attack in dysferlinopathy. Skelet Muscle 1:10. doi:10.1186/2044-5040-1-10

    Article  PubMed Central  PubMed  Google Scholar 

  34. Lek A, Evesson FJ, Lemckert FA, Redpath GM, Lueders AK, Turnbull L, Whitchurch CB, North KN, Cooper ST (2013) Calpains, cleaved mini-dysferlinC72, and L-type channels underpin calcium-dependent muscle membrane repair. J Neurosci 33:5085–5094. doi:10.1523/JNEUROSCI.3560-12.2013

    Article  CAS  PubMed  Google Scholar 

  35. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465. doi:10.1038/nrendo.2012.49

    Article  CAS  PubMed  Google Scholar 

  36. Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132:818–831. doi:10.1016/j.cell.2007.12.040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant-in-aid for Scientific Research(C) to N.G.-I. and by a grant-in-aid from the Funding Program for World-Leading Innovative R&D on Science and Technology by the Council for Science and Technology Policy to N.L.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuharu L. Fujii.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto-Inoue, N., Tamura, K., Motai, F. et al. A fragmented form of annexin A1 is secreted from C2C12 myotubes by electric pulse-induced contraction. Mol Cell Biochem 411, 173–180 (2016). https://doi.org/10.1007/s11010-015-2579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2579-8

Keywords

Navigation