Skip to main content
Log in

CCAAT-enhancer binding protein (C/EBP) β regulates insulin-like growth factor (IGF) 1 expression in porcine liver during prenatal and postnatal development

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

IGF1 expression regulation attracts numerous interests because of its important role during mammalian growth and development. Domestic pig can be used as a valuable animal model to investigate human development since they share the high similarity in general physiology and metabolism. In this study, we examined the expression pattern of IGF1 and found it associated with liver C/EBP β expression pattern in porcine liver during embryonic and postnatal development. Both IGF1 and C/EBP β expression in liver maintained at low levels before birth and increased after birth. Correspondingly, C/EBP β demonstrated high binding activity to two sites at IGF1 promoter region in liver after birth. Additionally, IGF1 expression can be activated by C/EBP β overexpression in porcine primary hepatocytes. These results indicated that C/EBP β can activate IGF1 expression after birth by binding to IGF1 promoter. Our study may contribute to a better understanding of mammalian development and bring a novel anti-aging pathway in human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Christoforidis A, Maniadaki I, Stanhope R (2005) Growth hormone/insulin-like growth factor-1 axis during puberty. Pediatr Endocrinol Rev PER 3:5–10

    Google Scholar 

  2. Miura Y, Kato H, Noguchi T (1992) Effect of dietary proteins on insulin-like growth factor-1 (IGF-1) messenger ribonucleic acid content in rat liver. Br J Nutr 67:257–265

    Article  CAS  PubMed  Google Scholar 

  3. Ohlsson C, Mohan S, Sjögren K, Tivesten Å, Isgaard J, Isaksson O et al (2009) The role of liver-derived insulin-like growth factor-I. Endocr Rev 30:494–535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Tannenbaum G, Guyda HJ, Posner BI (1983) Insulin-like growth factors: a role in growth hormone negative feedback and body weight regulation via brain. Science 220:77–79

    Article  CAS  PubMed  Google Scholar 

  5. Baker J, Liu J-P, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73–82

    Article  CAS  PubMed  Google Scholar 

  6. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    CAS  PubMed  Google Scholar 

  7. Clemmons DR (1997) Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine Growth Factor Rev 8:45–62

    Article  CAS  PubMed  Google Scholar 

  8. Annunziata M, Granata R, Ghigo E (2011) The IGF system. Acta Diabetol 48:1–9

    Article  CAS  PubMed  Google Scholar 

  9. Li S, Yakar S, Brodt P (2011) Role of the IGF-axis in liver metastasis: experimental and clinical evidence. liver metastasis: biology and clinical management. Springer, Dordecht, pp 233–271

    Book  Google Scholar 

  10. Liu J-P, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72

    CAS  PubMed  Google Scholar 

  11. Loughna PT, Mason P, Bates PC (1992) Regulation of insulin-like growth factor 1 gene expression in skeletal muscle. Symposia of the Society for Experimental Biology, p. 319

  12. Rosenbloom AL (2007) The role of recombinant insulin-like growth factor I in the treatment of the short child. Curr Opin Pediatr 19:458–464

    Article  PubMed  Google Scholar 

  13. Vaught J, Contreras P, Glicksman M, Neff N (2008) Potential utility of rhlGF-1 in neuromuscular and/or degenerative. Growth Factors Drugs Neurol Sens Disord 777:18

    Google Scholar 

  14. Pan Z, Zhang J, Zhang J, Zhou B, Chen J, Jiang Z et al (2012) Expression profiles of the insulin-like growth factor system components in liver tissue during embryonic and postnatal growth of Erhualian and Yorkshire reciprocal cross F-1 pigs. Asian Aust J Anim Sci 25:903–912

    Article  CAS  Google Scholar 

  15. Hiney JK, Ojeda S, Dees WL (1991) Insulin-like growth factor I: a possible metabolic signal involved in the regulation of female puberty. Neuroendocrinology 54:420–423

    Article  CAS  PubMed  Google Scholar 

  16. Laron Z, Klinger B (1998) Effect of insulin-like growth factor-I treatment on serum androgens and testicular and penile size in males with Laron syndrome (primary growth hormone resistance). Eur J Endocrinol 138:176–180

    Article  CAS  PubMed  Google Scholar 

  17. Argente J, Barrios V, Pozo J, Munoz M, Hervas F, Stene M et al (1993) Normative data for insulin-like growth factors (IGFs), IGF-binding proteins, and growth hormone-binding protein in a healthy Spanish pediatric population: age-and sex-related changes. J Clin Endocrinol Metab 77:1522–1528

    CAS  PubMed  Google Scholar 

  18. Kitanaka S (2008) Role of HNF-1α and HNF-1β on insulin, IGF-1 and other potential target genes. Expert Rev Endocrinol Metabol. doi:10.1586/17446651.3.4.441

    Google Scholar 

  19. Wolfrum C, Besser D, Luca E, Stoffel M (2003) Insulin regulates the activity of forkhead transcription factor Hnf-3β/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proc Natl Acad Sci 100:11624–11629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. LaVoie HA, Nguyen JB, Kordus RJ, Hui YY (2010) GATA6 depletion reduces cyclic AMP-stimulated IGF1 mRNA and free protein levels in luteinizing porcine granulosa cells. Biology of Reproduction, Soc Study Reproduction 1603 MONROE ST, Madison, WI 53711-2021 USA, pp. 185–185

  21. LaVoie HA, Kordus RJ, Nguyen JB, Barth JL, Hui YY (2010) GATA depletion impacts insulin-like growth factor 1 mRNA and protein levels in luteinizing porcine granulosa cells. Biol Reprod 83:1015–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Joung Y-H, Lee M-Y, Lim E-J, Kim M-S, Hwang TS, Kim S-Y et al (2007) Hypoxia activates the IGF-1 expression through STAT5b in human HepG2 cells. Biochem Biophys Res Commun 358:733–738

    Article  CAS  PubMed  Google Scholar 

  23. Hemati N, Ross SE, Erickson RL, Groblewski GE, MacDougald OA (1997) Signaling pathways through which insulin regulates CCAAT/enhancer binding protein α (C/EBPα) phosphorylation and gene expression in 3T3-L1 adipocytes correlation with GLUT4 gene Expression. J Biol Chem 272:25913–25919

    Article  CAS  PubMed  Google Scholar 

  24. Li F, Zhao R, Xu Q, Chen W, Ma Y, Chen J (2003) Characteristics of testosterone secretion in male Erhualian and Large White pigs in different developmental stages. J Nanjing Agric Univ 26:117–119

    Google Scholar 

  25. Sjögren K, Liu J-L, Blad K, Skrtic S, Vidal O, Wallenius V et al (1999) Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci 96:7088–7092

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kovács KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux J-R (2003) CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation. J Biol Chem 278:36959–36965

    Article  PubMed  Google Scholar 

  27. Ramji D, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365:561–575

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, Lopez RG, Rosenthal N et al (2009) A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci 106:17475–17480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Harries LW, Pilling LC, Hernandez LDG, Bradley-Smith R, Henley W, Singleton AB et al (2012) CCAAT-enhancer-binding protein-beta expression in vivo is associated with muscle strength. Aging Cell 11:262–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wessells J, Yakar S, Johnson PF (2004) Critical prosurvival roles for C/EBPβ and insulin-like growth factor I in macrophage tumor cells. Mol Cell Biol 24:3238–3250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Umayahara Y, Kajimoto Y, Fujitani Y, Gorogawa S-I, Yasuda T, Kuroda A et al (2002) Protein kinase C-dependent, CCAAT/enhancer-binding protein β-mediated expression of insulin-like growth factor I gene. J Biol Chem 277:15261–15270

    Article  CAS  PubMed  Google Scholar 

  32. Staiger J, Lueben MJ, Berrigan D, Malik R, Perkins SN, Hursting SD et al (2009) C/EBPβ regulates body composition, energy balance-related hormones and tumor growth. Carcinogenesis 30:832–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Cesi V, Giuffrida ML, Vitali R, Tanno B, Mancini C, Calabretta B et al (2005) C/EBP α and β mimic retinoic acid activation of IGFBP-5 in neuroblastoma cells by a mechanism independent from binding to their site. Exp Cell Res 305:179–189

    Article  CAS  PubMed  Google Scholar 

  34. Barzilai N, Bartke A (2009) Biological approaches to mechanistically understand the healthy life span extension achieved by calorie restriction and modulation of hormones. J Gerontol Ser A 64:187–191

    Article  Google Scholar 

  35. Bartke A (2011) Single-gene mutations and healthy ageing in mammals. Philos Trans R Soc B 366:28–34

    Article  CAS  Google Scholar 

  36. Suh Y, Atzmon G, Cho M-O, Hwang D, Liu B, Leahy DJ et al (2008) Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci 105:3438–3442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ et al (2005) Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 4:79–85

    Article  PubMed  Google Scholar 

  38. Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J et al (2009) Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8:460–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng C-W et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer and diabetes in humans. Sci Transl Med 3:70ra13

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from the following Projects: Study on the regulation of IGF1 gene in pig liver (National Natural Science Foundation of China 31472073 2015-2019); Cultivating New Varieties by Transgenic Technology (#2012ZX08006-003); and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Liu.

Electronic supplementary material

DNA size range analysis by agrose gel electrophoresis after 5min and 10min of sonication. Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Xiong, K., Shen, M. et al. CCAAT-enhancer binding protein (C/EBP) β regulates insulin-like growth factor (IGF) 1 expression in porcine liver during prenatal and postnatal development. Mol Cell Biochem 401, 209–218 (2015). https://doi.org/10.1007/s11010-014-2308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2308-8

Keywords

Navigation