Skip to main content

Advertisement

Log in

Crosstalk between TGF-β1 and CXCR3 signaling during urethral fibrosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Urethral fibrosis is an important pathological feature of urethral stricture. TGF-β1 and CXC chemokine receptor 3 (CXCR3) signaling have been reported as the critical pathways involved in the pathology of fibrosis. Here, we collected the urine samples from the patients with recurring urethral stricture, recurring stricture treated by cystostomy, and age- and gender-matched healthy people. ELISA detection revealed that TGF-β1 level was significantly up-regulated for the urethral stricture patients. By contrast, flow cytometry, real-time PCR detection, and immunofluoresecent staining showed that urethral stricture resulted in decreased expression of CXCR3. TGF-β1 treatment could increase cell proliferation and migration ability of urethra fibroblasts, whereas IP-10/CXCR3 signaling showed the opposite effect. Further, we found a crosstalk between TGF-β1 and CXCR3 signaling in the regulation of urethral fibrosis. Thus, pharmacological intervention of TGF-β1 or CXCR3 signaling has a potential as the therapeutic target for the prevention of urethral fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tonkin JB, Jordan GH (2009) Management of distal anterior urethral strictures. Nat Rev Urol 6(10):533–538

    Article  PubMed  Google Scholar 

  2. Peterson AC, Webster GD (2004) Management of urethral stricture disease: developing options for surgical intervention. BJU Int 94(7):971–976

    Article  PubMed  Google Scholar 

  3. Melekos MD, Naber KG (2000) Complicated urinary tract infections. Int J Antimicrob Agents 15(4):247–256

    Article  CAS  PubMed  Google Scholar 

  4. Jaidane M, Ali-El-Dein B, Ounaies A, Hafez AT, Mohsen T, Bazeed M (2003) The use of halofuginone in limiting urethral stricture formation and recurrence: an experimental study in rabbits. J Urol 170(5):2049–2052

    Article  CAS  PubMed  Google Scholar 

  5. Da-Silva EA, Sampaio FJ, Dornas MC, DamiÃO R, Cardoso LE (2002) Extracellular matrix changes in urethral stricture disease. J Urol 168(2):805–807

    Article  PubMed  Google Scholar 

  6. El-Kassaby AW, Retik AB, Yoo JJ, Atala A (2003) Urethral stricture repair with an off-the-shelf collagen matrix. J Urol 169(1):170–173

    Article  CAS  PubMed  Google Scholar 

  7. Joseph JV, Andrich DE, Leach CJ, Mundy AR (2002) Urethroplasty for refractory anterior urethral stricture. J Urol 167(1):127–129

    Article  PubMed  Google Scholar 

  8. Herpin A, Lelong C, Favrel P (2004) Transforming growth factor-β-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28(5):461–485

    Article  CAS  PubMed  Google Scholar 

  9. Pohlers D, Brenmoehl J, Löffler I et al (2009) TGF-β and fibrosis in different organs—molecular pathway imprints. Biochim Biophys Acta 1792(8):746–756

    Article  CAS  PubMed  Google Scholar 

  10. Leask A, Abraham DJ (2004) TGF-β signaling and the fibrotic response. FASEB J 18(7):816–827

    Article  CAS  PubMed  Google Scholar 

  11. Martin M, Lefaix J-L, Delanian S (2000) TGF-β1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47(2):277–290

    Article  CAS  PubMed  Google Scholar 

  12. Liu L, Callahan MK, Huang D, Ransohoff RM (2005) Chemokine receptor CXCR3: an unexpected enigma. Curr Top Dev Biol 68:149–181

    Article  CAS  PubMed  Google Scholar 

  13. Morgia G, Saita A, Falsaperla M, Spampinato A, Motta M, Cordaro S (2000) Immunohistochemical and molecular analysis in recurrent urethral stricture. Urol Res 28(5):319–322

    Article  CAS  PubMed  Google Scholar 

  14. Yates CC, Krishna P, Whaley D, Bodnar R, Turner T, Wells A (2010) Lack of CXC chemokine receptor 3 signaling leads to hypertrophic and hypercellular scarring. Am J Pathol 176(4):1743–1755

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ivaska J, Pallari H-M, Nevo J, Eriksson JE (2007) Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313(10):2050–2062

    Article  CAS  PubMed  Google Scholar 

  16. Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD (2002) IFN-γ-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 168(7):3195–3204

    Article  CAS  PubMed  Google Scholar 

  17. Booth V, Keizer DW, Kamphuis MB, Clark-Lewis I, Sykes BD (2002) The CXCR3 binding chemokine IP-10/CXCL10: structure and receptor interactions. Biochemistry 41(33):10418–10425

    Article  CAS  PubMed  Google Scholar 

  18. Lumen N, Hoebeke P, Willemsen P, De Troyer B, Pieters R, Oosterlinck W (2009) Etiology of urethral stricture disease in the 21st century. J Urol 182(3):983–987

    Article  PubMed  Google Scholar 

  19. Heyns C, Steenkamp J, De Kock M, Whitaker P (1998) Treatment of male urethral strictures: is repeated dilation or internal urethrotomy useful? J Urol 160(2):356–358

    Article  CAS  PubMed  Google Scholar 

  20. Waxman SW, Morey AF (2006) Management of urethral strictures. Lancet 367(9520):1379–1380

    Article  PubMed  Google Scholar 

  21. Brandes SB (2008) Epidemiology, etiology, histology, classification, and economic impact of urethral stricture disease. Brandes SB(ed) Urethral reconstructive surgery. Springer, New York, pp 53–61

    Chapter  Google Scholar 

  22. Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J (2007) TGF-β signaling in vascular fibrosis. Cardiovasc Res 74(2):196–206

    Article  CAS  PubMed  Google Scholar 

  23. Roos N, Poulalhon N, Farge D, Madelaine I, Mauviel A, Verrecchia F (2007) In vitro evidence for a direct antifibrotic role of the immunosuppressive drug mycophenolate mofetil. J Pharmacol Exp Ther 321(2):583–589

    Article  CAS  PubMed  Google Scholar 

  24. Groom JR, Luster AD (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89(2):207–215

    Article  CAS  PubMed  Google Scholar 

  25. Jiang D, Liang J, Hodge J et al (2004) Regulation of pulmonary fibrosis by chemokine receptor CXCR3. J Clin Invest 114(2):291–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zeremski M, Petrovic LM, Chiriboga L et al (2008) Intrahepatic levels of CXCR3-associated chemokines correlate with liver inflammation and fibrosis in chronic hepatitis C. Hepatology 48(5):1440–1450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Nakaya I, Wada T, Furuichi K et al (2007) Blockade of IP-10/CXCR3 promotes progressive renal fibrosis. Nephron Exp Nephrol 107(1):e12–e21

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Feng, C., Fu, Q. et al. Crosstalk between TGF-β1 and CXCR3 signaling during urethral fibrosis. Mol Cell Biochem 394, 283–290 (2014). https://doi.org/10.1007/s11010-014-2104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2104-5

Keywords

Navigation