Skip to main content
Log in

Ischemic postconditioning: mechanisms, comorbidities, and clinical application

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Since ischemic heart disease (IHD) is a major cause of mortality and heart failure, novel therapeutic strategies are expected to improve the clinical outcomes of patients with acute myocardial infarction. Brief episodes of ischemia/reperfusion performed at the onset of reperfusion can reduce infarct size; a phenomenon termed “ischemic postconditioning.” Extensive research has determined that different autacoids (e.g., adenosine, bradykinin, opioid, etc.) and cytokines, their respective receptors, kinase signaling pathways, and mitochondrial modulation are involved in ischemic conditioning. Modification of these factors by pharmacological agents mimics the cardioprotection by ischemic postconditioning. Here, the potential mechanisms of ischemic postconditioning, the presence of comorbidities, and the possible extrapolation to the clinical setting are reviewed. In the near future, large, multicentered, randomized, placebo-controlled, clinical trials will be required to determine whether pharmacological and/or ischemic postconditioning can improve the clinical outcomes of patients with IHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gibbons RJ, Valeti US, Araoz PA et al (2004) The quantification of infarct size. J Am Coll Cardiol 44:1533–1542

    Article  PubMed  Google Scholar 

  2. Go A, Mozaffarian D, Roger V et al (2013) Heart disease and stroke statistics—2013 update a report from the American Heart Association. Circulation 127:e6–e245. doi:10.1161/CIR.0b013e31828124ad

    Article  PubMed  Google Scholar 

  3. Zhao ZQ, Corvera JS, Halkos ME et al (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285:H579–H588

    CAS  PubMed  Google Scholar 

  4. Donato M, D’Annunzio V, Berg G et al (2007) Ischemic postconditioning reduces infarct size by activation of A1 receptors and K+(ATP) channels in both normal and hypercholesterolemic rabbits. J Cardiovasc Pharmacol 49:287–292

    Article  CAS  PubMed  Google Scholar 

  5. Gomez L, Thibault H, Gharib A et al (2007) Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice. Am J Physiol Heart Circ Physiol 293:H1654–H1661

    Article  CAS  PubMed  Google Scholar 

  6. Schwartz LM, Lagranha CJ (2006) Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia–reperfusion injury in pigs. Am J Physiol Heart Circ Physiol 290:H1011–H1018

    Article  CAS  PubMed  Google Scholar 

  7. Skyschally A, van Caster P, Iliodromitis EK et al (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol 104:469–483. doi:10.1007/s00395-009-0040-4

    Article  PubMed  Google Scholar 

  8. Kin H, Zhao ZQ, Sun HY et al (2004) Postconditioning attenuates myocardial ischemia–reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res 62:74–85

    Article  CAS  PubMed  Google Scholar 

  9. Engelman DT, Watanabe M, Engleman RM et al (1995) Constitutive nitric oxide release is impaired after ischemia and reperfusion. J Thorac Cardiovasc Surg 110:1047–1053

    Article  CAS  PubMed  Google Scholar 

  10. Schwartz BG, Kloner RA (2012) Coronary no reflow. J Mol Cell Cardiol 52:873–882. doi:10.1016/j.yjmcc.2011.06.009

    Article  CAS  PubMed  Google Scholar 

  11. Reffelmann T, Kloner RA (2006) The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion. Basic Res Cardiol 101:359–372

    Article  PubMed  Google Scholar 

  12. Zhao JL, Yang YJ, You SJ et al (2007) Different effects of postconditioning on myocardial no-reflow in the normal and hypercholesterolemic mini-swines. Microvasc Res 73:137–142

    Article  PubMed  Google Scholar 

  13. Sun HY, Wang NP, Halkos M et al (2006) Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis 11:1583–1593

    Article  CAS  PubMed  Google Scholar 

  14. Tian Y, Zhang W, Xia D, Modi P et al (2011) Postconditioning inhibits myocardial apoptosis during prolonged reperfusion via a JAK2-STAT3-Bcl-2 pathway. J Biomed Sci 2:18–53. doi:10.1186/1423-0127-18-53

    Google Scholar 

  15. Kin H, Wang NP, Mykytenko J et al (2008) Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-kappa B translocation and TNF alpha release. Shock 29:761–768. doi:10.1097/SHK.0b013e31815cfd5a

    CAS  PubMed  Google Scholar 

  16. Penna C, Perrelli MG, Tullio F et al (2013) Diazoxide postconditioning induces mitochondrial protein S-nitrosylation and a redox-sensitive mitochondrial phosphorylation/translocation of RISK elements: no role for SAFE. Basic Res Cardiol 108:371. doi:10.1007/s00395-013-0371-z

    Article  CAS  PubMed  Google Scholar 

  17. Anversa P, Cheng W, Liu Y et al (1998) Apoptosis and myocardial infarction. Basic Res Cardiol 93:8–12

    Article  PubMed  Google Scholar 

  18. Rodríguez M, Lucchesi BR, Schaper J (2002) Apoptosis in myocardial infarction. Ann Med 34:470–479

    Article  PubMed  Google Scholar 

  19. Yaoita H, Ogawa K, Maehara K et al (2000) Apoptosis in relevant clinical situations: contribution of apoptosis in myocardial infarction. Cardiovasc Res 45:630–641

    Article  CAS  PubMed  Google Scholar 

  20. Garg S, Hofstra L, Reutelingsperger C et al (2003) Apoptosis as a therapeutic target in acutely ischemic myocardium. Curr Opin Cardiol 18:372–377

    Article  PubMed  Google Scholar 

  21. Zhao ZQ, Vinten-Johansen J (2002) Myocardial apoptosis and ischemic preconditioning. Cardiovasc Res 55:438–455

    Article  CAS  PubMed  Google Scholar 

  22. Cohen MV, Yang XM, Neumann T et al (2000) Favorable remodeling enhances recovery of regional myocardial function in the weeks after infarction in ischemically preconditioned hearts. Circulation 102:579–583

    Article  CAS  PubMed  Google Scholar 

  23. Penna C, Tullio F, Merlino A et al (2009) Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Res Cardiol 104:390–402. doi:10.1007/s00395-008-0762-8

    Article  PubMed  Google Scholar 

  24. Shinohara G, Morita K, Nagahori R et al (2011) Ischemic postconditioning promotes left ventricular functional recovery after cardioplegic arrest in an in vivo piglet model of global ischemia reperfusion injury on cardiopulmonary bypass. J Thorac Cardiovasc Surg 142:926–932. doi:10.1016/j.jtcvs.2011.01.028

    Article  PubMed  Google Scholar 

  25. Sasaki H, Shimizu M, Ogawa K et al (2007) Brief ischemia–reperfusion performed after prolonged ischemia (ischemic postconditioning) can terminate reperfusion arrhythmias with no reduction of cardiac function in rats. Int Heart J 48:205–213

    Article  PubMed  Google Scholar 

  26. Bell RM, Yellon DM (2012) Conditioning the whole heart-not just the cardiomyocyte. J Mol Cell Cardiol 53:24–32. doi:10.1016/j.yjmcc.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  27. Ovize M, Baxter GF, Di Lisa F et al (2010) Postconditioning and protection from reperfusion injury: where do we stand? Cardiovasc Res 87:406–423. doi:10.1093/cvr/cvq129

    Article  CAS  PubMed  Google Scholar 

  28. Yang XM, Philipp S, Downey JM, Cohen MV (2005) Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol 100(1):57–63

    Article  CAS  PubMed  Google Scholar 

  29. Kin H, Zatta AJ, Lofye MT et al (2005) Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res 67:124–133

    Article  CAS  PubMed  Google Scholar 

  30. Philipp S, Yang XM, Cui L et al (2006) Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res 70:308–314

    Article  CAS  PubMed  Google Scholar 

  31. Buchholz B, D´Annunzio V, Giani JF et al (2014) Ischemic postconditioning reduces infarct size trough the α-1 adrenergic receptor pathway. J Cardiovasc Pharmacol. doi:10.1097/FJC.0000000000000074

  32. Inserte J, Barba I, Hernando V, Garcia-Dorado D (2009) Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium. Cardiovasc Res 81:116–122. doi:10.1093/cvr/cvn260

    Article  CAS  PubMed  Google Scholar 

  33. Schäfer C, Ladilov Y, Siegmund B, Piper HM (2000) Importance of bicarbonate transport for protection of cardiomyocytes against reoxygenation injury. Am J Physiol 278:H1457–H1463

    Google Scholar 

  34. Penna C, Cappello S, Mancardi D et al (2006) Postconditioning reduces infarct size in the isolated rat heart: role of coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Res Cardiol 101:168–179

    Article  CAS  PubMed  Google Scholar 

  35. Yang XM, Proctor JB, Cui L et al (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44:1103–1110

    Article  PubMed  Google Scholar 

  36. Fujita M, Asanuma H, Hirata A et al (2007) Prolonged transient acidosis during early reperfusion contributes to the cardioprotective effects of postconditioning. Am J Physiol 292:H2004–H2008. doi:10.1152/ajpheart.01051.2006

    Article  CAS  Google Scholar 

  37. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232

    Article  CAS  PubMed  Google Scholar 

  38. Inserte J, Barba I, Poncelas-Nozal M et al (2011) cGMP/PKG pathway mediates myocardial postconditioning protection in rat hearts by delaying normalization of intracellular acidosis during reperfusion. J Mol Cell Cardiol 50:903–909. doi:10.1016/j.yjmcc.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  39. Skyschally A, van Caster P, Boengler K et al (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  CAS  PubMed  Google Scholar 

  40. Inserte J, Hernando V, Vilardosa U et al (2013) Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative stress and preserved endothelial nitric oxide synthase coupling. J Am Heart Assoc 2:e005975. doi:10.1161/JAHA.112.005975

    Article  PubMed Central  PubMed  Google Scholar 

  41. Wang W, Sawicki G, Schulz R (2002) Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res 53(1):165–174

    Article  CAS  PubMed  Google Scholar 

  42. Singh RB, Hryshko L, Freed D et al (2012) Activation of proteolytic enzymes and depression of the sarcolemmal Na+/K+-ATPase in ischemia-reperfused heart may be mediated through oxidative stress. Can J Physiol Pharmacol 90:249–260. doi:10.1139/y11-128

    Article  CAS  PubMed  Google Scholar 

  43. Rork TH, Hadzimichalis NM, Kappil MA et al (2006) Acetaminophen attenuates peroxynitrite-activated matrix metalloproteinase-2-mediated troponin I cleavage in the isolated guinea pig myocardium. J Mol Cell Cardiol 40:553–561

    Article  CAS  PubMed  Google Scholar 

  44. Sawicki G, Leon H, Sawicka J et al (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia–reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112:544–552

    Article  CAS  PubMed  Google Scholar 

  45. Sung MM, Schulz CG, Wang W et al (2007) Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol 434:29–36

    Google Scholar 

  46. Giricz Z, Lalu MM, Csonka C et al (2006) Hyperlipidemia attenuates the infarct size-limiting effect of ischemic preconditioning: role of matrix metalloproteinase-2 inhibition. J Pharmacol Exp Ther 316:154–161

    Article  CAS  PubMed  Google Scholar 

  47. Donato M, D’Annunzio V, Buchholz B et al (2010) Role of matrix metalloproteinase-2 in the cardioprotective effect of ischaemic postconditioning. Exp Physiol 95:274–281. doi:10.1113/expphysiol.2009.049874

    Article  CAS  PubMed  Google Scholar 

  48. Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc Res 61:372–385

    Article  CAS  PubMed  Google Scholar 

  49. Penna C, Perrelli MG, Pagliaro P (2013) Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 18:556–599. doi:10.1089/ars.2011.4459

    Article  CAS  PubMed  Google Scholar 

  50. Mykytenko J, Reeves JG, Kin H et al (2008) Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial K (ATP) channels during reperfusion. Basic Res Cardiol 103:472–484. doi:10.1007/s00395-008-0731-2

    Article  CAS  PubMed  Google Scholar 

  51. Javadov S, Karmazyn M (2007) Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem 20:1–22

    Article  CAS  PubMed  Google Scholar 

  52. Gomez L, Paillard M, Thibault H et al (2008) Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117(21):2761–2768. doi:10.1161/CIRCULATIONAHA.107.755066

    Article  CAS  PubMed  Google Scholar 

  53. Hausenloy DJ, Ong SB, Yellon DM (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 104:189–202. doi:10.1007/s00395-009-0010-x

    Article  CAS  PubMed  Google Scholar 

  54. Argaud L, Gateau-Roesch O, Raisky O et al (2005) Postconditioning inhibits mitochondrial permeability transition. Circulation 111:194–197

    Article  CAS  PubMed  Google Scholar 

  55. Bopassa JC, Ferrera R, Gateau-Roesch O et al (2006) PI3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res 69:178–185

    Article  CAS  PubMed  Google Scholar 

  56. Scott MG, Richard P, Philip G et al (1999) Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations. Circulation 100:1481–1492

    Article  Google Scholar 

  57. Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 59:418–458

    Article  CAS  PubMed  Google Scholar 

  58. Messerli FH, Grossman E (2001) Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 38:E11

    Article  CAS  PubMed  Google Scholar 

  59. Penna C, Tullio F, Perrelli MG et al (2011) Ischemia/reperfusion injury is increased and cardioprotection by a postconditioning protocol is lost as cardiac hypertrophy develops in nandrolone treated rats. Basic Res Cardiol 106:409–420. doi:10.1007/s00395-010-0143-y

    Article  CAS  PubMed  Google Scholar 

  60. Fantinelli JC, Mosca SM (2007) Comparative effects of ischemic pre and postconditioning on ischemia–reperfusion injury in spontaneously hypertensive rats (SHR). Mol Cell Biochem 296:45–51

    Article  CAS  PubMed  Google Scholar 

  61. Iliodromitis EK, Zoga A, Vrettou A et al (2006) The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits. Atherosclerosis 188:356–362

    Article  CAS  PubMed  Google Scholar 

  62. Kupai K, Csonka C, Fekete V et al (2009) Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am J Physiol Heart Circ Physiol 297:H1729–H1735. doi:10.1152/ajpheart.00484.2009

    Article  CAS  PubMed  Google Scholar 

  63. Sack MN (2009) Type 2 diabetes, mitochondrial biology and the heart. J Mol Cell Cardiol 46:842–849. doi:10.1016/j.yjmcc.2009.02.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Xu J, Wu Y, Song P, Zhang M, Wang S, Zou MH (2007) Proteasome-dependent degradation of guanosine 5′-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation 116:944–953

    Article  CAS  PubMed  Google Scholar 

  65. Oosterlinck W, Dresselaers T, Geldhof V et al (2013) Diabetes mellitus and the metabolic syndrome do not abolish, but might reduce, the cardioprotective effect of ischemic postconditioning. J Thorac Cardiovasc Surg 145:1595–1602. doi:10.1016/j.jtcvs.2013.02.016

    Article  PubMed  Google Scholar 

  66. Ren JY, Song JX, Lu MY et al (2011) Cardioprotection by ischemic postconditioning is lost in isolated perfused heart from diabetic rats: involvement of transient receptor potential vanilloid 1, calcitonin gene-related peptide and substance P. Regul Pept 169:49–57. doi:10.1016/j.regpep.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  67. Miki T, Itoh T, Sunaga D et al (2012) Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol 11:67. doi:10.1186/1475-2840-11-67

    Article  PubMed Central  PubMed  Google Scholar 

  68. Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 301:H1723–H1741. doi:10.1152/ajpheart.00553.2011

    Article  CAS  PubMed  Google Scholar 

  69. Przyklenk K, Maynard M, Greiner DL et al (2011) Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal 14:781–790. doi:10.1089/ars.2010.3343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Laskey WK, Yoon S, Calzada N et al (2008) Concordant improvements in coronary flow reserve and ST-segment resolution during percutaneous coronary intervention for acute myocardial infarction: a benefit of postconditioning. Catheter Cardiovasc Interv 72:212–220. doi:10.1002/ccd.21583

    Article  PubMed  Google Scholar 

  71. Staat P, Rioufol G, Piot C et al (2005) Postconditioning the human heart. Circulation 112:2143–2148

    Article  PubMed  Google Scholar 

  72. Darling CE, Solari PB, Smith CS et al (2007) ‘Postconditioning’ the human heart: multiple balloon inflations during primary angioplasty may confer cardioprotection. Basic Res Cardiol 102:274–278

    Article  PubMed  Google Scholar 

  73. Skyschally A, Walter B, Heusch G (2013) Coronary microembolization during early reperfusion: infarct extension, but protection by ischaemic postconditioning. Eur Heart J 34:3314–3321. doi:10.1093/eurheartj/ehs434

    Article  CAS  PubMed  Google Scholar 

  74. Mewton N, Thibault H, Roubille F et al (2013) Postconditioning attenuates no-reflow in STEMI patients. Basic Res Cardiol 108:383. doi:10.1007/s00395-013-0383-8

    Article  PubMed  Google Scholar 

  75. Heusch G (2013) Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381:166–175. doi:10.1016/S0140-6736(12)60916-7

    Article  PubMed  Google Scholar 

  76. Ovize M, Thibault H, Przyklenk K (2013) Myocardial conditioning: opportunities for clinical translation. Circ Res 113:439–450. doi:10.1161/CIRCRESAHA.113.300764

    Article  CAS  PubMed  Google Scholar 

  77. Sörensson P, Rydén L, Saleh N et al (2013) Long-term impact of postconditioning on infarct size and left ventricular ejection fraction in patients with ST-elevation myocardial infarction. BMC Cardiovasc Disord 13:22. doi:10.1186/1471-2261-13-22

    Article  PubMed Central  PubMed  Google Scholar 

  78. Wei Y, Ruan L, Zhou G et al (2012) Local ischemic postconditioning during primary percutaneous coronary intervention: a meta-analysis. Cardiology 123:225–233. doi:10.1159/000342660

    Article  PubMed  Google Scholar 

  79. Zhou C, Yao Y, Zheng Z et al (2012) Stenting technique, gender, and age are associated with cardioprotection by ischaemic postconditioning in primary coronary intervention: a systematic review of 10 randomized trials. Eur Heart J 33:3070–3077. doi:10.1093/eurheartj/ehs265

    Article  PubMed  Google Scholar 

  80. Loubeyre C, Morice MC, Lefevre T et al (2002) A randomized comparison of direct stenting with conventional stent implantation in selected patients with acute myocardial infarction. J Am Coll Cardiol 39:15–21

    Article  PubMed  Google Scholar 

  81. DANish Study of Optimal Acute Treatment of Patients With ST-elevation Myocardial Infarction; ClinicalTrials.gov Identifier: NCT01435408)

  82. Zhao CM, Yang XJ, Yang JH et al (2012) Effect of ischemic postconditioning on recovery of left ventricular contractile function after acute myocardial infarction. J Int Med Res 40(3):1082–1088

    Article  CAS  PubMed  Google Scholar 

  83. Luo W, Li B, Lin G et al (2008) Does cardioplegia leave room for postconditioning in paediatric cardiac surgery? Cardiol Young 18:282–287. doi:10.1017/S1047951108002072

    Article  PubMed  Google Scholar 

  84. Thibault H, Piot C, Staat P et al (2008) Long-term benefit of postconditioning. Circulation 117(8):1037–1044. doi:10.1161/CIRCULATIONAHA.107.729780

    Article  CAS  PubMed  Google Scholar 

  85. Luo W, Li B, Chen R et al (2008) Effect of ischemic postconditioning in adult valve replacement. Eur J Cardiothorac Surg 33(2):203–208

    Article  PubMed  Google Scholar 

  86. Ma XJ, Yin HJ, Guo CY et al (2012) Ischemic postconditioning through percutaneous transluminal coronary angioplasty in pigs: roles of PI3K activation. Coron Artery Dis 23(4):245–250. doi:10.1097/MCA.0b013e3283526a7d

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Buenos Aires Grant (UBACYT B069), National Agency of Scientific and Technological Promotion (05/PICT13069; 06/PICT01071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo J. Gelpi.

Additional information

Bruno Buchholz and Martín Donato have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchholz, B., Donato, M., D’Annunzio, V. et al. Ischemic postconditioning: mechanisms, comorbidities, and clinical application. Mol Cell Biochem 392, 1–12 (2014). https://doi.org/10.1007/s11010-014-2014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2014-6

Keywords

Navigation