Skip to main content
Log in

The mitochondrial cyclophilin D/p53 complexation mediates doxorubicin-induced non-apoptotic death of A549 lung cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Doxorubicin has displayed significant cytotoxic effects against the lung cancer cells; however, the underlying mechanisms remain inconclusive. In the current study, we provided evidence to show that mitochondrial p53 and cyclophilin D (Cyp-D) complexation is required for doxorubicin-induced death of lung cancer A549 cells. Doxorubicin induced both apoptotic and non-apoptotic death of A549 cells. Cyclosporine A (CsA), the Cyp-D inhibitor, and Cyp-D silencing were prevented doxorubicin-induced non-apoptotic death of A549 cells, while cells overexpressing Cyp-D were hyper-sensitive to doxorubicin. In A549 cells, doxorubicin-activated p53, the latter translocated to mitochondria and physically interacted with Cyp-D. The p53/Cyp-D mitochondrial complexation was prevented by CsA or Cyp-D silencing, or by p53 inhibitor pifithrin-α. Significantly, doxorubicin-induced anti-tumor ability in vivo was also compromised by CsA, or when Cyp-D was silenced. Together, these data suggested that Dox-induced non-apoptotic death of A549 cells requires mitochondrial Cyp-D–p53 complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  2. Cagle PT (2013) The new American Cancer Society Lung Cancer Screening guidelines and the role of the pathologist. Arch Pathol Lab Med 137:451

    Article  PubMed  Google Scholar 

  3. Smith RA, Brooks D, Cokkinides V, Saslow D, Brawley OW (2013) Cancer screening in the United States, 2013: a review of current American Cancer Society guidelines, current issues in cancer screening, and new guidance on cervical cancer screening and lung cancer screening. CA Cancer J Clin 63:88–105

    Article  PubMed  Google Scholar 

  4. Gaspar LE, Chansky K, Albain KS, Vallieres E, Rusch V, Crowley JJ, Livingston RB, Gandara DR (2005) Time from treatment to subsequent diagnosis of brain metastases in stage III non-small-cell lung cancer: a retrospective review by the Southwest Oncology Group. J Clin Oncol 23:2955–2961

    Article  PubMed  Google Scholar 

  5. Vatsyayan R, Chaudhary P, Lelsani PC, Singhal P, Awasthi YC, Awasthi S, Singhal SS (2009) Role of RLIP76 in doxorubicin resistance in lung cancer. Int J Oncol 34:1505–1511

    CAS  PubMed Central  PubMed  Google Scholar 

  6. von Pawel J, Schiller JH, Shepherd FA, Fields SZ, Kleisbauer JP, Chrysson NG, Stewart DJ, Clark PI, Palmer MC, Depierre A, Carmichael J, Krebs JB, Ross G, Lane SR, Gralla R (1999) Topotecan versus cyclophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J Clin Oncol 17:658–667

    Google Scholar 

  7. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF (1984) Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 226:466–468

    Article  CAS  PubMed  Google Scholar 

  8. Bian X, McAllister-Lucas LM, Shao F, Schumacher KR, Feng Z, Porter AG, Castle VP, Opipari AW Jr (2001) NF-kappa B activation mediates doxorubicin-induced cell death in N-type neuroblastoma cells. J Biol Chem 276:48921–48929

    Article  CAS  PubMed  Google Scholar 

  9. Mukhopadhyay P, Rajesh M, Batkai S, Kashiwaya Y, Hasko G, Liaudet L, Szabo C, Pacher P (2009) Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol 296:H1466–H1483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Liu J, Mao W, Ding B, Liang CS (2008) ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am J Physiol Heart Circ Physiol 295:H1956–H1965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE, Akslen LA, Lonning PE (1996) Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2:811–814

    Article  CAS  PubMed  Google Scholar 

  12. Marine JC (2010) Pharmacological rescue of p53 in cancer therapy: widening the sensitive tumor spectrum by targeting MDMX. Cancer Cell 18:399–400

    Article  CAS  PubMed  Google Scholar 

  13. Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908

    Article  CAS  PubMed  Google Scholar 

  14. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149:1536–1548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Baumann K (2012) Cell death: multitasking p53 promotes necrosis. Nat Rev Mol Cell Biol 13:480–481

    Article  CAS  PubMed  Google Scholar 

  16. Chen MB, Shen WX, Yang Y, Wu XY, Gu JH, Lu PH (2011) Activation of AMP-activated protein kinase is involved in vincristine-induced cell apoptosis in B16 melanoma cell. J Cell Physiol 226:1915–1925

    Article  CAS  PubMed  Google Scholar 

  17. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    Article  CAS  PubMed  Google Scholar 

  18. Ji C, Yang B, Yang Z, Tu Y, Yang YL, He L, Bi ZG (2012) Ultra-violet B (UVB)-induced skin cell death occurs through a cyclophilin D intrinsic signaling pathway. Biochem Biophys Res Commun 425:825–829

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Li H, Zuo M, Zhang Y, Liu H, Fang W, Chen X (2008) L2–32c, a novel taxane and its antitumor activities in vitro and in vivo. Cancer Lett 268:89–97

    Article  CAS  PubMed  Google Scholar 

  20. Chen B, Xu M, Zhang H, Wang JX, Zheng P, Gong L, Wu GJ, Dai T (2013) Cisplatin-induced non-apoptotic death of pancreatic cancer cells requires mitochondrial cyclophilin-D–p53 signaling. Biochem Biophys Res Commun 437(4):526–531

    Article  CAS  PubMed  Google Scholar 

  21. Du H, Guo L, Fang F, Chen D, Sosunov AA, McKhann GM, Yan Y, Wang C, Zhang H, Molkentin JD, Gunn-Moore FJ, Vonsattel JP, Arancio O, Chen JX, Yan SD (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 14:1097–1105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Du H, Guo L, Zhang W, Rydzewska M, Yan S (2011) Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model. Neurobiol Aging 32:398–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Javadov S, Kuznetsov A (2013) Mitochondrial permeability transition and cell death: the role of cyclophilin d. Front Physiol 4:76

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Kwok TT, Mok CH, Menton-Brennan L (1994) Up-regulation of a mutant form of p53 by doxorubicin in human squamous carcinoma cells. Cancer Res 54:2834–2836

    CAS  PubMed  Google Scholar 

  25. Yeh PY, Chuang SE, Yeh KH, Song YC, Chang LL, Cheng AL (2004) Phosphorylation of p53 on Thr55 by ERK2 is necessary for doxorubicin-induced p53 activation and cell death. Oncogene 23:3580–3588

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the Chinese NSFC.

Conflict of interest

No conflict of interests was stated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xu.

Additional information

Jia-huan Lu and Zhi-feng Shi have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2013_1922_MOESM1_ESM.eps

Figure S. Morphological change of A549 cells after Dox treatment with inhibitors or shRNA. Stable A549 cells expressing scramble shRNA, Cyp-D shRNA (clone-1 and clone-2) were either left untreated or stimulated with Dox (0.1 μM) for 72 h, cell morphology was taken. For the scramble shRNA transfected A549 cells, the effect of CsA (10 μM) and/or Z-VAD-fmk (ZVAD, 50 μM) on Dox-induced morphology change is also shown (*100) (EPS 6105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Jh., Shi, Zf. & Xu, H. The mitochondrial cyclophilin D/p53 complexation mediates doxorubicin-induced non-apoptotic death of A549 lung cancer cells. Mol Cell Biochem 389, 17–24 (2014). https://doi.org/10.1007/s11010-013-1922-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1922-1

Keywords

Navigation