Skip to main content

Advertisement

Log in

Conundrum of pathogenesis of diabetic cardiomyopathy: role of vascular endothelial dysfunction, reactive oxygen species, and mitochondria

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diabetic cardiomyopathy and heart failure have been recognized as the leading causes of mortality among diabetics. Diabetic cardiomyopathy has been characterized primarily by the manifestation of left ventricular dysfunction that is independent of coronary artery disease and hypertension among the patients affected by diabetes mellitus. A complex array of contributing factors including the hypertrophy of left ventricle, alterations of metabolism, microvascular pathology, insulin resistance, fibrosis, apoptotic cell death, and oxidative stress have been implicated in the pathogenesis of diabetic cardiomyopathy. Nevertheless, the exact mechanisms underlying the pathogenesis of diabetic cardiomyopathy are yet to be established. The critical involvement of multifarious factors including the vascular endothelial dysfunction, microangiopathy, reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction has been identified in the mechanism of pathogenesis of diabetic cardiomyopathy. Although it is difficult to establish how each factor contributes to disease, the involvement of ROS and mitochondrial dysfunction are emerging as front-runners in the mechanism of pathogenesis of diabetic cardiomyopathy. This review highlights the role of vascular endothelial dysfunction, ROS, oxidative stress, and mitochondriopathy in the pathogenesis of diabetic cardiomyopathy. Furthermore, the review emphasizes that the puzzle has to be solved to firmly establish the mitochondrial and/or ROS mechanism(s) by identifying their most critical molecular players involved at both spatial and temporal levels in diabetic cardiomyopathy as targets for specific and effective pharmacological/therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    CAS  PubMed  Google Scholar 

  2. Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J, Nichols G (2010) Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:293–301

    PubMed  Google Scholar 

  3. Giacomelli F, Wiener J (1979) Primary myocardial disease in the diabetic mouse. An ultrastructural study. Lab Invest 40:460–473

    CAS  PubMed  Google Scholar 

  4. Roda L, Patessio A, Neri V, Tisi C, Ferrari A, Ricci A (1980) Diabetic cardiomyopathy in preclinical phase. Polycardiographic and echocardiographic study (author’s transl). G Ital Cardiol 10:1299–1307

    CAS  PubMed  Google Scholar 

  5. Scott RC (1984) Cardiomyopathy in diabetic patients. West J Med 140:610–612

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    CAS  PubMed  Google Scholar 

  7. Liu JE, Palmieri V, Roman MJ, Bella JN, Fabsitz R, Howard BV, Welty TK, Lee ET, Devereux RB (2001) The impact of diabetes on left ventricular filling pattern in normotensive and hypertensive adults: the Strong Heart Study. J Am Coll Cardiol 37:1943–1949

    CAS  PubMed  Google Scholar 

  8. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34:29–34

    CAS  PubMed  Google Scholar 

  9. Aronow WS, Ahn C (1999) Incidence of heart failure in 2,737 older persons with and without diabetes mellitus. Chest 115:867–868

    CAS  PubMed  Google Scholar 

  10. Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB (2004) The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 27:1879–1884

    PubMed  Google Scholar 

  11. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321:405–412

    CAS  PubMed  Google Scholar 

  12. Garcia MJ, McNamara PM, Gordon T, Kannel WB (1974) Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes 23:105–111

    CAS  PubMed  Google Scholar 

  13. Gaede P, Vedel P, Parving HH, Pedersen O (1999) Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet 353:617–622

    CAS  PubMed  Google Scholar 

  14. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605

    CAS  PubMed  Google Scholar 

  15. Raev DC (1994) Left ventricular function and specific diabetic complications in other target organs in young insulin-dependent diabetics: an echocardiographic study. Heart Vessels 9:121–128

    CAS  PubMed  Google Scholar 

  16. Schannwell CM, Schoebel FC, Heggen S, Marx R, Perings C, Leschke M, Strauer BE (1999) Early decrease in diastolic function in young type I diabetic patients as an initial manifestation of diabetic cardiomyopathy. Z Kardiol 88:338–346

    CAS  PubMed  Google Scholar 

  17. Maya L, Villarreal FJ (2010) Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis. J Mol Cell Cardiol 48:524–529

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Khouri SJ, Maly GT, Suh DD, Walsh TE (2004) A practical approach to the echocardiographic evaluation of diastolic function. J Am Soc Echocardiogr 17:290–297

    PubMed  Google Scholar 

  19. Di Bonito P, Moio N, Cavuto L, Covino G, Murena E, Scilla C, Turco S, Capaldo B, Sibilio G (2005) Early detection of diabetic cardiomyopathy: usefulness of tissue Doppler imaging. Diabet Med 22:1720–1725

    PubMed  Google Scholar 

  20. Boyer JK, Thanigaraj S, Schechtman KB, Perez JE (2004) Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol 93:870–875

    PubMed  Google Scholar 

  21. Saraiva RM, Duarte DM, Duarte MP, Martins AF, Poltronieri AV, Ferreira ME, Silva MC, Hohleuwerger R, Ellis A, Rachid MB, Monteiro CF, Kaiser SE (2005) Tissue Doppler imaging identifies asymptomatic normotensive diabetics with diastolic dysfunction and reduced exercise tolerance. Echocardiography 22:561–570

    PubMed  Google Scholar 

  22. Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil JG (2001) Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care 24:5–10

    CAS  PubMed  Google Scholar 

  23. Raev DC (1994) Which left ventricular function is impaired earlier in the evolution of diabetic cardiomyopathy? An echocardiographic study of young type I diabetic patients. Diabetes Care 17:633–639

    CAS  PubMed  Google Scholar 

  24. Von Bibra H, Thrainsdottir IS, Hansen A, Dounis V, Malmberg K, Ryden L (2005) Tissue Doppler imaging for the detection and quantitation of myocardial dysfunction in patients with type 2 diabetes mellitus. Diab Vasc Dis Res 2:24–30

    Google Scholar 

  25. Zabalgoitia M, Ismaeil MF, Anderson L, Maklady FA (2001) Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am J Cardiol 87:320–323

    CAS  PubMed  Google Scholar 

  26. Henry RM, Paulus WJ, Kamp O, Kostense PJ, Spijkerman AM, Dekker JM, Nijpels G, Heine RJ, Bouter LM, Stehouwer CD (2008) Deteriorating glucose tolerance status is associated with left ventricular dysfunction—the Hoorn Study. Neth J Med 66:110–117

    CAS  PubMed  Google Scholar 

  27. Kane GC, Karon BL, Mahoney DW, Redfield MM, Roger VL, Burnett JC Jr, Jacobsen SJ, Rodeheffer RJ (2011) Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA 306:856–863

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Astorri E, Fiorina P, Contini GA, Albertini D, Magnati G, Astorri A, Lanfredini M (1997) Isolated and preclinical impairment of left ventricular filling in insulin-dependent and non-insulin-dependent diabetic patients. Clin Cardiol 20:536–540

    CAS  PubMed  Google Scholar 

  29. Robillon JF, Sadoul JL, Jullien D, Morand P, Freychet P (1994) Abnormalities suggestive of cardiomyopathy in patients with type 2 diabetes of relatively short duration. Diabete Metab 20:473–480

    CAS  PubMed  Google Scholar 

  30. Salazar J, Rivas A, Rodriguez M, Felipe J, Garcia MD, Bone J (1994) Left ventricular function determined by Doppler echocardiography in adolescents with type I (insulin-dependent) diabetes mellitus. Acta Cardiol 49:435–439

    CAS  PubMed  Google Scholar 

  31. Dinh W, Lankisch M, Nickl W, Gies M, Scheyer D, Kramer F, Scheffold T, Krahns T, Sause A, Futh R (2011) Metabolic syndrome with or without diabetes contributes to left ventricular diastolic dysfunction. Acta Cardiol 66:167–174

    PubMed  Google Scholar 

  32. Dinh W, Lankisch M, Nickl W, Scheyer D, Scheffold T, Kramer F, Krahn T, Klein RM, Barroso MC, Futh R (2010) Insulin resistance and glycemic abnormalities are associated with deterioration of left ventricular diastolic function: a cross-sectional study. Cardiovasc Diabetol 9:63

    PubMed Central  PubMed  Google Scholar 

  33. Futh R, Dinh W, Bansemir L, Ziegler G, Bufe A, Wolfertz J, Scheffold T, Lankisch M (2009) Newly detected glucose disturbance is associated with a high prevalence of diastolic dysfunction: double risk for the development of heart failure? Acta Diabetol 46:335–338

    CAS  PubMed  Google Scholar 

  34. Shimabukuro M, Higa N, Asahi T, Yamakawa K, Oshiro Y, Higa M, Masuzaki H (2011) Impaired glucose tolerance, but not impaired fasting glucose, underlies left ventricular diastolic dysfunction. Diabetes Care 34:686–690

    PubMed  Google Scholar 

  35. Di Cori A, Di Bello V, Miccoli R, Talini E, Palagi C, Delle Donne MG, Penno G, Nardi C, Bianchi C, Mariani M, Del Prato S, Balbarini A (2007) Left ventricular function in normotensive young adults with well-controlled type 1 diabetes mellitus. Am J Cardiol 99:84–90

    PubMed  Google Scholar 

  36. Ha JW, Oh JK, Pellikka PA, Ommen SR, Stussy VL, Bailey KR, Seward JB, Tajik AJ (2005) Diastolic stress echocardiography: a novel noninvasive diagnostic test for diastolic dysfunction using supine bicycle exercise Doppler echocardiography. J Am Soc Echocardiogr 18:63–68

    PubMed  Google Scholar 

  37. Ernande L, Rietzschel ER, Bergerot C, De Buyzere ML, Schnell F, Groisne L, Ovize M, Croisille P, Moulin P, Gillebert TC, Derumeaux G (2010) Impaired myocardial radial function in asymptomatic patients with type 2 diabetes mellitus: a speckle-tracking imaging study. J Am Soc Echocardiogr 23:1266–1272

    PubMed  Google Scholar 

  38. Acar G, Akcay A, Sokmen A, Ozkaya M, Guler E, Sokmen G, Kaya H, Nacar AB, Tuncer C (2009) Assessment of atrial electromechanical delay, diastolic functions, and left atrial mechanical functions in patients with type 1 diabetes mellitus. J Am Soc Echocardiogr 22:732–738

    PubMed  Google Scholar 

  39. Aurigemma GP, Gottdiener JS, Shemanski L, Gardin J, Kitzman D (2001) Predictive value of systolic and diastolic function for incident congestive heart failure in the elderly: the Cardiovascular Health Study. J Am Coll Cardiol 37:1042–1048

    CAS  PubMed  Google Scholar 

  40. Eren M, Gorgulu S, Uslu N, Celik S, Dagdeviren B, Tezel T (2004) Relation between aortic stiffness and left ventricular diastolic function in patients with hypertension, diabetes, or both. Heart 90:37–43

    CAS  PubMed  Google Scholar 

  41. Mitchell GF, Moyé LA, Braunwald E, Rouleau J-L, Bernstein V, Geltman EM, Flaker GC, Pfeffer MA (1997) Sphygmomanometrically determined pulse pressure is a powerful independent predictor of recurrent events after myocardial infarction in patients with impaired left ventricular function. Circulation 96:4254–4260

    CAS  PubMed  Google Scholar 

  42. Doering CW, Jalil JE, Janicki JS, Pick R, Aghili S, Abrahams C, Weber K (1988) Collagen network remodelling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res 22:686–695

    CAS  PubMed  Google Scholar 

  43. Taegtmeyer H, McNulty P, Young ME (2002) Adaptation and maladaptation of the heart in diabetes: part I General concepts. Circulation 105:1727–1733

    CAS  PubMed  Google Scholar 

  44. Mahgoub MA, Abd-Elfattah AS (1998) Diabetes mellitus and cardiac function. Mol Cell Biochem 180:59–64

    CAS  PubMed  Google Scholar 

  45. Van den Bergh A, Flameng W, Herijgers P (2006) Type II diabetic mice exhibit contractile dysfunction but maintain cardiac output by favourable loading conditions. Eur J Heart Fail 8:777–783

    PubMed  Google Scholar 

  46. Radovits T, Korkmaz S, Loganathan S, Barnucz E, Bomicke T, Arif R, Karck M, Szabo G (2009) Comparative investigation of the left ventricular pressure–volume relationship in rat models of type 1 and type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 297:H125–H133

    CAS  PubMed  Google Scholar 

  47. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    PubMed  Google Scholar 

  48. Fischer VW, Barner HB, LaRose LS (1982) Quadriceps and myocardial capillary basal laminae. Their comparison in diabetic patients. Arch Pathol Lab Med 106:336–341

    CAS  PubMed  Google Scholar 

  49. Fischer VW, Barner HB, Larose LS (1984) Pathomorphologic aspects of muscular tissue in diabetes mellitus. Hum Pathol 15:1127–1136

    CAS  PubMed  Google Scholar 

  50. Sutherland CG, Fisher BM, Frier BM, Dargie HJ, More IA, Lindop GB (1989) Endomyocardial biopsy pathology in insulin-dependent diabetic patients with abnormal ventricular function. Histopathology 14:593–602

    CAS  PubMed  Google Scholar 

  51. Kawaguchi M, Techigawara M, Ishihata T, Asakura T, Saito F, Maehara K, Maruyama Y (1997) A comparison of ultrastructural changes on endomyocardial biopsy specimens obtained from patients with diabetes mellitus with and without hypertension. Heart Vessels 12:267–274

    CAS  PubMed  Google Scholar 

  52. Thompson EW (1988) Structural manifestations of diabetic cardiomyopathy in the rat and its reversal by insulin treatment. Am J Anat 182:270–282

    CAS  PubMed  Google Scholar 

  53. Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1321

    CAS  PubMed  Google Scholar 

  54. Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME, Burrell LM (2003) A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 92:785–792

    CAS  PubMed  Google Scholar 

  55. Norton GR, Candy G, Woodiwiss AJ (1996) Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 93:1905–1912

    CAS  PubMed  Google Scholar 

  56. Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier OH, Taegtmeyer H (2004) Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 18:1692–1700

    CAS  PubMed  Google Scholar 

  57. Rohr S (2004) Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc Res 62:309–322

    CAS  PubMed  Google Scholar 

  58. Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Exp Biol 200:315–319

    CAS  PubMed  Google Scholar 

  59. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205

    CAS  PubMed  Google Scholar 

  60. Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA (2002) Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 283:H1398–H1408

    CAS  PubMed  Google Scholar 

  61. op den Buijs J, Miklos Z, van Riel NA, Prestia CM, Szenczi O, Toth A, Van der Vusse GJ, Szabo C, Ligeti L, Ivanics T (2005) beta-Adrenergic activation reveals impaired cardiac calcium handling at early stage of diabetes. Life Sci 76:1083–1098

    CAS  PubMed  Google Scholar 

  62. Ren J, Davidoff AJ (1997) Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Physiol 272:H148–H158

    CAS  PubMed  Google Scholar 

  63. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS (1983) Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244:E528–E535

    CAS  PubMed  Google Scholar 

  64. Penpargkul S, Fein F, Sonnenblick EH, Scheuer J (1981) Depressed cardiac sarcoplasmic reticular function from diabetic rats. J Mol Cell Cardiol 13:303–309

    CAS  PubMed  Google Scholar 

  65. Zhao XY, Hu SJ, Li J, Mou Y, Chen BP, Xia Q (2006) Decreased cardiac sarcoplasmic reticulum Ca2+-ATPase activity contributes to cardiac dysfunction in streptozotocin-induced diabetic rats. J Physiol Biochem 62:1–8

    CAS  PubMed  Google Scholar 

  66. Teshima Y, Takahashi N, Saikawa T, Hara M, Yasunaga S, Hidaka S, Sakata T (2000) Diminished expression of sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine sensitive Ca(2+)Channel mRNA in streptozotocin-induced diabetic rat heart. J Mol Cell Cardiol 32:655–664

    CAS  PubMed  Google Scholar 

  67. Zhong Y, Ahmed S, Grupp IL, Matlib MA (2001) Altered SR protein expression associated with contractile dysfunction in diabetic rat hearts. Am J Physiol Heart Circ Physiol 281:H1137–H1147

    CAS  PubMed  Google Scholar 

  68. Bidasee KR, Dincer UD, Besch HR Jr (2001) Ryanodine receptor dysfunction in hearts of streptozotocin-induced diabetic rats. Mol Pharmacol 60:1356–1364

    CAS  PubMed  Google Scholar 

  69. Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH (2002) Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 51:1166–1171

    CAS  PubMed  Google Scholar 

  70. Belke DD, Swanson EA, Dillmann WH (2004) Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53:3201–3208

    CAS  PubMed  Google Scholar 

  71. Yaras N, Ugur M, Ozdemir S, Gurdal H, Purali N, Lacampagne A, Vassort G, Turan B (2005) Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 54:3082–3088

    CAS  PubMed  Google Scholar 

  72. Vita JA, Keaney JF Jr (2002) Endothelial function: a barometer for cardiovascular risk? Circulation 106:640–642

    PubMed  Google Scholar 

  73. Drexler H (1998) Factors involved in the maintenance of endothelial function. Am J Cardiol 82:3S–4S

    CAS  PubMed  Google Scholar 

  74. Meigs JB, Hu FB, Rifai N, Manson JE (2004) Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 291:1978–1986

    CAS  PubMed  Google Scholar 

  75. Schalkwijk C, Stehouwer C (2005) Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci 109:143–159

    CAS  PubMed  Google Scholar 

  76. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    CAS  PubMed  Google Scholar 

  77. Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708–1714

    PubMed  Google Scholar 

  78. Li H, Förstermann U (2000) Nitric oxide in the pathogenesis of vascular disease. J Pathol 190:244–254

    CAS  PubMed  Google Scholar 

  79. Chaudhuri G, Cuevas J, Buga GM, Ignarro LJ (1993) NO is more important than PGI2 in maintaining low vascular tone in feto-placental vessels. Am J Physiol Heart Circ Physiol 265:H2036–H2043

    CAS  Google Scholar 

  80. Hamed S, Brenner B, Aharon A, Daoud D, Roguin A (2009) Nitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitus. Cardiovasc Diabetol 8:56

    PubMed Central  PubMed  Google Scholar 

  81. Festa A, D’Agostino R Jr, Tracy RP, Haffner SM (2002) Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 51:1131–1137

    CAS  PubMed  Google Scholar 

  82. Hirata K, Kuroda R, Sakoda T, Katayama M, Inoue N, Suematsu M, Kawashima S, Yokoyama M (1995) Inhibition of endothelial nitric oxide synthase activity by protein kinase C. Hypertension 25:180–185

    CAS  PubMed  Google Scholar 

  83. Frank PG, Lisanti MP (2008) ICAM-1: role in inflammation and in the regulation of vascular permeability. Am J Physiol Heart Circ Physiol 295:H926–H927

    CAS  PubMed  Google Scholar 

  84. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P (1986) Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315:1046–1051

    CAS  PubMed  Google Scholar 

  85. Adameova A, Dhalla NS (2013) Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev. doi:10.1007/s10741-013-9378-7

  86. Mortuza R, Chakrabarti S (2013) Glucose-induced cell signaling in the pathogenesis of diabetic cardiomyopathy. Heart Fail Rev. doi:10.1007/s10741-013-9381-z

  87. Sheikh AQ, Hurley JR, Huang W, Taghian T, Kogan A, Cho H, Wang Y, Narmoneva DA (2012) Diabetes alters intracellular calcium transients in cardiac endothelial cells. PLoS ONE 7:e36840

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Cheng Y, Guo S, Liu G, Feng Y, Yan B, Yu J, Feng K, Li Z (2012) Transplantation of bone marrow-derived endothelial progenitor cells attenuates myocardial interstitial fibrosis and cardiac dysfunction in streptozotocin-induced diabetic rats. Int J Mol Med 30:870–876

    CAS  PubMed  Google Scholar 

  89. Duvall WL (2005) Endothelial dysfunction and antioxidants. Mt Sinai J Med 72:71–80

    PubMed  Google Scholar 

  90. Monti LD, Casiraghi MC, Setola E, Galluccio E, Pagani MA, Quaglia L, Bosi E, Piatti P (2013) l-Arginine enriched biscuits improve endothelial function and glucose metabolism: a pilot study in healthy subjects and a cross-over study in subjects with impaired glucose tolerance and metabolic syndrome. Metabolism 62:255–264

    CAS  PubMed  Google Scholar 

  91. Shechter M, Sharir M, Labrador MJ, Forrester J, Silver B, Bairey Merz CN (2000) Oral magnesium therapy improves endothelial function in patients with coronary artery disease. Circulation 102:2353–2358

    CAS  PubMed  Google Scholar 

  92. Kawano H, Yasue H, Kitagawa A, Hirai N, Yoshida T, Soejima H, Miyamoto S, Nakano M, Ogawa H (2003) Dehydroepiandrosterone supplementation improves endothelial function and insulin sensitivity in men. J Clin Endocrinol Metab 88:3190–3195

    CAS  PubMed  Google Scholar 

  93. Potenza MA, Marasciulo FL, Tarquinio M, Tiravanti E, Colantuono G, Federici A, Kim J-a, Quon MJ, Montagnani M (2007) EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab 292:E1378–E1387

    CAS  PubMed  Google Scholar 

  94. Hirata Y, Nagata D, Suzuki E, Nishimatsu H, Suzuki J, Nagai R (2010) Diagnosis and treatment of endothelial dysfunction in cardiovascular disease. Int Heart J 51:1–6

    CAS  PubMed  Google Scholar 

  95. Kulkarni AC, Kuppusamy P, Parinandi N (2007) Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid Redox Signal 9:1717–1730

    CAS  PubMed  Google Scholar 

  96. Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B, Weinberger P, Linert W, Vareslija D, Tipton KF, Della Corte L (2011) Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci 68:2067–2079

    CAS  PubMed  Google Scholar 

  97. Neri M, Fineschi V, Di Paolo M, Pomara C, Riezzo I, Turillazzi E, Cerretani D (2013) Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Curr Vasc Pharmacol. PMID: 23628007

  98. Sultana R, Perluigi M, Allan Butterfield D (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169

    Google Scholar 

  99. Xu Y, Gu Y, Qian SY (2012) An advanced electron spin resonance (ESR) spin-trapping and LC/(ESR)/MS technique for the study of lipid peroxidation. Int J Mol Sci 13:14648–14666

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Bocci V, Valacchi G (2013) Free radicals and antioxidants: how to reestablish redox homeostasis in chronic diseases? Curr Med Chem

  101. Guerra-Araiza C, Alvarez-Mejia AL, Sanchez-Torres S, Farfan-Garcia E, Mondragon-Lozano R, Pinto-Almazan R, Salgado-Ceballos H (2013) Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radic Res 47:451–462

    CAS  PubMed  Google Scholar 

  102. Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson disease. Free Radic Biol Med 62:13–25

    Google Scholar 

  103. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91 Spec No:179–194

  105. Giergiel M, Lopucki M, Stachowicz N, Kankofer M (2012) The influence of age and gender on antioxidant enzyme activities in humans and laboratory animals. Aging Clin Exp Res 24:561–569

    CAS  PubMed  Google Scholar 

  106. Wang J, Song Y, Wang Q, Kralik PM, Epstein PN (2006) Causes and characteristics of diabetic cardiomyopathy. Rev Diabet Stud 3:108–117

    PubMed Central  PubMed  Google Scholar 

  107. Falcao-Pires I, Leite-Moreira AF (2012) Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 17:325–344

    CAS  PubMed  Google Scholar 

  108. Khavandi K, Khavandi A, Asghar O, Greenstein A, Withers S, Heagerty AM, Malik RA (2009) Diabetic cardiomyopathy—a distinct disease? Best Pract Res Clin Endocrinol Metab 23:347–360

    PubMed  Google Scholar 

  109. Ungvari Z, Gupte SA, Recchia FA, Batkai S, Pacher P (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3:221–229

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Haidara MA, Yassin HZ, Rateb M, Ammar H, Zorkani MA (2006) Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. Curr Vasc Pharmacol 4:215–227

    CAS  PubMed  Google Scholar 

  111. Selvaraju V, Joshi M, Suresh S, Sanchez JA, Maulik N, Maulik G (2012) Diabetes, oxidative stress, molecular mechanism, and cardiovascular disease—an overview. Toxicol Mech Methods 22:330–335

    CAS  PubMed  Google Scholar 

  112. Khullar M, Al-Shudiefat AA, Ludke A, Binepal G, Singal PK (2010) Oxidative stress: a key contributor to diabetic cardiomyopathy. Can J Physiol Pharmacol 88:233–240

    CAS  PubMed  Google Scholar 

  113. Ansley DM, Wang B (2013) Oxidative stress and myocardial injury in the diabetic heart. J Pathol 229:232–241

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Mellor KM, Ritchie RH, Delbridge LM (2010) Reactive oxygen species and insulin-resistant cardiomyopathy. Clin Exp Pharmacol Physiol 37:222–228

    CAS  PubMed  Google Scholar 

  116. Dirkx E, Schwenk RW, Glatz JF, Luiken JJ, van Eys GJ (2011) High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fatty Acids 85:219–225

    CAS  PubMed  Google Scholar 

  117. Cai L, Kang YJ (2001) Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 1:181–193

    CAS  PubMed  Google Scholar 

  118. Ishikawa K, Kimura S, Kobayashi A, Sato T, Matsumoto H, Ujiie Y, Nakazato K, Mitsugi M, Maruyama Y (2005) Increased reactive oxygen species and anti-oxidative response in mitochondrial cardiomyopathy. Circ J 69:617–620

    PubMed  Google Scholar 

  119. Wold LE, Ceylan-Isik AF, Ren J (2005) Oxidative stress and stress signaling: menace of diabetic cardiomyopathy. Acta Pharmacol Sin 26:908–917

    CAS  PubMed  Google Scholar 

  120. Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55:798–805

    CAS  PubMed  Google Scholar 

  121. Akhileshwar V, Patel SP, Katyare SS (2007) Diabetic cardiomyopathy and reactive oxygen species (ROS) related parameters in male and female rats: a comparative study. Indian J Clin Biochem 22:84–90

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Almdal T, Scharling H, Jensen JS, Vestergaard H (2004) The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med 164:1422–1426

    PubMed  Google Scholar 

  123. Barrett-Connor E, Giardina EG, Gitt AK, Gudat U, Steinberg HO, Tschoepe D (2004) Women and heart disease: the role of diabetes and hyperglycemia. Arch Intern Med 164:934–942

    PubMed  Google Scholar 

  124. Juutilainen A, Kortelainen S, Lehto S, Ronnemaa T, Pyorala K, Laakso M (2004) Gender difference in the impact of type 2 diabetes on coronary heart disease risk. Diabetes Care 27:2898–2904

    PubMed  Google Scholar 

  125. Bruno G, Giunti S, Bargero G, Ferrero S, Pagano G, Perin PC (2004) Sex-differences in prevalence of electrocardiographic left ventricular hypertrophy in Type 2 diabetes: the Casale Monferrato Study. Diabet Med 21:823–828

    CAS  PubMed  Google Scholar 

  126. Turdi S, Li Q, Lopez FL, Ren J (2007) Catalase alleviates cardiomyocyte dysfunction in diabetes: role of Akt, Forkhead transcriptional factor and silent information regulator 2. Life Sci 81:895–905

    CAS  PubMed  Google Scholar 

  127. Montezano AC, Touyz RM (2012) Reactive oxygen species and endothelial function—role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 110:87–94

    CAS  PubMed  Google Scholar 

  128. Maalouf RM, Eid AA, Gorin YC, Block K, Escobar GP, Bailey S, Abboud HE (2012) Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. Am J Physiol Cell Physiol 302:C597–C604

    CAS  PubMed  Google Scholar 

  129. Octavia Y, Brunner-La Rocca HP, Moens AL (2012) NADPH oxidase-dependent oxidative stress in the failing heart: from pathogenic roles to therapeutic approach. Free Radic Biol Med 52:291–297

    CAS  PubMed  Google Scholar 

  130. Cho HY, Reddy SP, Kleeberger SR (2006) Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 8:76–87

    CAS  PubMed  Google Scholar 

  131. Li B, Liu S, Miao L, Cai L (2012) Prevention of diabetic complications by activation of Nrf2: diabetic cardiomyopathy and nephropathy. Exp Diabetes Res 2012:216512

    PubMed Central  PubMed  Google Scholar 

  132. Bhagavan HN, Chopra RK (2007) Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion 7(Suppl):S78–S88

    CAS  PubMed  Google Scholar 

  133. Littarru GP, Tiano L, Belardinelli R, Watts GF (2011) Coenzyme Q(10), endothelial function, and cardiovascular disease. BioFactors 37:366–373

    CAS  PubMed  Google Scholar 

  134. Huynh K, Kiriazis H, Du XJ, Love JE, Gray SP, Jandeleit-Dahm KA, McMullen JR, Ritchie RH (2013) Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic Biol Med 60:307–317

    CAS  PubMed  Google Scholar 

  135. Turan B (2010) Role of antioxidants in redox regulation of diabetic cardiovascular complications. Curr Pharm Biotechnol 11:819–836

    CAS  PubMed  Google Scholar 

  136. Apostolova N, Blas-Garcia A, Esplugues JV (2011) Mitochondria sentencing about cellular life and death: a matter of oxidative stress. Curr Pharm Des 17:4047–4060

    CAS  PubMed  Google Scholar 

  137. Higgins GC, Beart PM, Shin YS, Chen MJ, Cheung NS, Nagley P (2010) Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J Alzheimers Dis 20(Suppl 2):S453–S473

    PubMed  Google Scholar 

  138. Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567–H1576

    CAS  PubMed  Google Scholar 

  139. Kowaltowski AJ (2000) Alternative mitochondrial functions in cell physiopathology: beyond ATP production. Braz J Med Biol Res 33:241–250

    CAS  PubMed  Google Scholar 

  140. Mammucari C, Rizzuto R (2010) Signaling pathways in mitochondrial dysfunction and aging. Mech Ageing Dev 131:536–543

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17:422–427

    CAS  PubMed  Google Scholar 

  142. Sordahl LA (1979) Role of mitochondria in heart cell function. Tex Rep Biol Med 39:5–18

    CAS  PubMed  Google Scholar 

  143. Williamson CL, Dabkowski ER, Baseler WA, Croston TL, Alway SE, Hollander JM (2010) Enhanced apoptotic propensity in diabetic cardiac mitochondria: influence of subcellular spatial location. Am J Physiol Heart Circ Physiol 298:H633–H642

    CAS  PubMed  Google Scholar 

  144. Di Lisa F, Canton M, Menabo R, Kaludercic N, Bernardi P (2007) Mitochondria and cardioprotection. Heart Fail Rev 12:249–260

    PubMed  Google Scholar 

  145. Tanaka Y, Konno N, Kako KJ (1992) Mitochondrial dysfunction observed in situ in cardiomyocytes of rats in experimental diabetes. Cardiovasc Res 26:409–414

    CAS  PubMed  Google Scholar 

  146. Momiyama Y, Atsumi Y, Ohsuzu F, Ui S, Morinaga S, Matsuoka K, Kimura M (1999) Rapid progression of cardiomyopathy in mitochondrial diabetes. Jpn Circ J 63:130–132

    CAS  PubMed  Google Scholar 

  147. Sack MN (2009) Type 2 diabetes, mitochondrial biology and the heart. J Mol Cell Cardiol 46:842–849

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Dobrin JS, Lebeche D (2010) Diabetic cardiomyopathy: signaling defects and therapeutic approaches. Expert Rev Cardiovasc Ther 8:373–391

    CAS  PubMed  Google Scholar 

  149. Bugger H, Abel ED (2010) Mitochondria in the diabetic heart. Cardiovasc Res 88:229–240

    CAS  PubMed  Google Scholar 

  150. Duncan JG (2011) Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta 1813:1351–1359

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Adeghate E, Singh J (2013) Structural changes in the myocardium during diabetes-induced cardiomyopathy. Heart Fail Rev. doi:10.1007/s10741-013-9388-5

  152. Feuvray D, Darmellah A (2008) Diabetes-related metabolic perturbations in cardiac myocyte. Diabetes Metab 34(Suppl 1):S3–S9

    CAS  PubMed  Google Scholar 

  153. Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD (2009) Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol 54:1891–1898

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Lin G, Brownsey RW, MacLeod KM (2009) Regulation of mitochondrial aconitase by phosphorylation in diabetic rat heart. Cell Mol Life Sci 66:919–932

    CAS  PubMed  Google Scholar 

  155. Boudina S, Bugger H, Sena S, O’Neill BT, Zaha VG, Ilkun O, Wright JJ, Mazumder PK, Palfreyman E, Tidwell TJ, Theobald H, Khalimonchuk O, Wayment B, Sheng X, Rodnick KJ, Centini R, Chen D, Litwin SE, Weimer BE, Abel ED (2009) Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation 119:1272–1283

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Mariappan N, Elks CM, Sriramula S, Guggilam A, Liu Z, Borkhsenious O, Francis J (2010) NF-kappaB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovasc Res 85:473–483

    CAS  PubMed  Google Scholar 

  157. Nakamura H, Matoba S, Iwai-Kanai E, Kimata M, Hoshino A, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M, Mita Y, Ikeda K, Okigaki M, Adachi S, Tanaka H, Takamatsu T, Matsubara H (2012) p53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration-mediated reactive oxygen species generation and lipid accumulation. Circ Heart Fail 5:106–115

    CAS  PubMed  Google Scholar 

  158. Murphy E, Wong R, Steenbergen C (2008) Signalosomes: delivering cardioprotective signals from GPCRs to mitochondria. Am J Physiol Heart Circ Physiol 295:H920–H922

    CAS  PubMed  Google Scholar 

  159. Latronico MV, Condorelli G (2012) The might of microRNA in mitochondria. Circ Res 110:1540–1542

    Google Scholar 

  160. Dabkowski ER, Williamson CL, Bukowski VC, Chapman RS, Leonard SS, Peer CJ, Callery PS, Hollander JM (2009) Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations. Am J Physiol Heart Circ Physiol 296:H359–H369

    CAS  PubMed  Google Scholar 

  161. Fancher IS, Dick GM, Hollander JM (2013) Diabetes mellitus reduces the function and expression of ATP-dependent K(+) channels in cardiac mitochondria. Life Sci 92:664–668

    CAS  PubMed  Google Scholar 

  162. Gucek M, Murphy E (2010) What can we learn about cardioprotection from the cardiac mitochondrial proteome? Cardiovasc Res 88:211–218

    CAS  PubMed  Google Scholar 

  163. Murphy E, Steenbergen C (2011) What makes the mitochondria a killer? Can we condition them to be less destructive? Biochim Biophys Acta 1813:1302–1308

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Baseler WA, Dabkowski ER, Williamson CL, Croston TL, Thapa D, Powell MJ, Razunguzwa TT, Hollander JM (2011) Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction. Am J Physiol Regul Integr Comp Physiol 300:R186–R200

    CAS  PubMed  Google Scholar 

  165. Essop MF, Chan WA, Hattingh S (2011) Proteomic analysis of mitochondrial proteins in a mouse model of type 2 diabetes. Cardiovasc J Afr 22:175–178

    CAS  PubMed  Google Scholar 

  166. Bolisetty S, Jaimes EA (2013) Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 14:6306–6344

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Gao L, Laude K, Cai H (2008) Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Vet Clin North Am Small Anim Pract 38:137–155, vi

    Google Scholar 

  168. Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2009) Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 45:643–650

    CAS  PubMed  Google Scholar 

  169. Parinandi NL, Weis BK, Schmid HH (1988) Assay of cardiolipin peroxidation by high-performance liquid chromatography. Chem Phys Lipids 49:215–220

    CAS  PubMed  Google Scholar 

  170. Shi Y (2010) Emerging roles of cardiolipin remodeling in mitochondrial dysfunction associated with diabetes, obesity, and cardiovascular diseases. J Biomed Res 24:6–15

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Wong R, Steenbergen C, Murphy E (2012) Mitochondrial permeability transition pore and calcium handling. Methods Mol Biol 810:235–242

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Han X, Yang J, Yang K, Zhao Z, Abendschein DR, Gross RW (2007) Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study. Biochemistry 46:6417–6428

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Han X, Yang J, Cheng H, Yang K, Abendschein DR, Gross RW (2005) Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction. Biochemistry 44:16684–16694

    CAS  PubMed  Google Scholar 

  174. Saini-Chohan HK, Holmes MG, Chicco AJ, Taylor WA, Moore RL, McCune SA, Hickson-Bick DL, Hatch GM, Sparagna GC (2009) Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. J Lipid Res 50:1600–1608

    CAS  PubMed  Google Scholar 

  175. Kiebish MA, Yang K, Sims HF, Jenkins CM, Liu X, Mancuso DJ, Zhao Z, Guan S, Abendschein DR, Han X, Gross RW (2012) Myocardial regulation of lipidomic flux by cardiolipin synthase: setting the beat for bioenergetic efficiency. J Biol Chem 287:25086–25097

    CAS  PubMed  Google Scholar 

  176. Goldstein A, Wolfe LA (2013) The elusive magic pill: finding effective therapies for mitochondrial disorders. Neurotherapeutics 10:320–328

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Institute of Health Grants HL-56803 and HL-69910 to NM. We would like to acknowledge Shereen Cynthia D’Cruz, Ph.D and Joshua Goldman for their assistance during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjana Maulik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, M., Kotha, S.R., Malireddy, S. et al. Conundrum of pathogenesis of diabetic cardiomyopathy: role of vascular endothelial dysfunction, reactive oxygen species, and mitochondria. Mol Cell Biochem 386, 233–249 (2014). https://doi.org/10.1007/s11010-013-1861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1861-x

Keywords

Navigation