Skip to main content
Log in

Alternative splicing of human insulin receptor gene (INSR) in type I and type II skeletal muscle fibers of patients with myotonic dystrophy type 1 and type 2

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

INSR, one of those genes aberrantly expressed in myotonic dystrophy type 1 (DM1) and type 2 (DM2) due to a toxic RNA effect, encodes for the insulin receptor (IR). Its expression is regulated by alternative splicing generating two isoforms: IR-A, which predominates in embryonic tissue, and IR-B, which is highly expressed in adult, insulin-responsive tissues (skeletal muscle, liver, and adipose tissue). The aberrant INSR expression detected in DM1 and DM2 muscles tissues, characterized by a relative increase of IR-A versus IR-B, was pathogenically related to the insulin resistance occurring in DM patients. To assess if differences in the aberrant splicing of INSR could underlie the distinct fiber type involvement observed in DM1 and DM2 muscle tissues, we have used laser capture microdissection (LCM) and RT-PCR, comparing the alternative splicing of INSR in type I and type II muscle fibers isolated from muscle biopsies of DM1, DM2 patients and controls. In the controls, the relative amounts of IR-A and IR-B showed no obvious differences between type I and type II fibers, as in the whole muscle tissue. In DM1 and DM2 patients, both fiber types showed a similar, relative increase of IR-A versus IR-B, as also evident in the whole muscle tissue. Our data suggest that the distinct fiber type involvement in DM1 and DM2 muscle tissues would not be related to qualitative differences in the expression of INSR. LCM can represent a powerful tool to give a better understanding of the pathogenesis of myotonic dystrophies, as well as other myopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Harper PS (2001) Myotonic dystrophy, 3rd edn. Saunders, London

    Google Scholar 

  2. Day JW, Ricker K, Jacobsen JF, Rasmussen LJ, Dick KA, Kress W, Schneider C, Koch MC, Beilman GJ, Harrison AR, Dalton JC, Ranum LP (2003) Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 60:657–664

    Article  CAS  PubMed  Google Scholar 

  3. Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, Sohna R, Zemelmana B, Snellb RG, Rundleb SA, Crowb S, Daviesb J, Shelbourneb P, Buxtonb J, Jonesb C, Juvonenb V, Johnsonb K, Harperb PS, Shawb J, Housmana DE (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68:799–808 Erratum in: Cell 69 385

    Article  CAS  PubMed  Google Scholar 

  4. Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, Neville C, Narang M, Barceló J, O’Hoy K, Leblond S, Earle-Macdonald J, de Jong P, Wieringa B, Korneluk RG (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255:1253–1255

    Article  CAS  PubMed  Google Scholar 

  5. Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:864–867

    Article  CAS  PubMed  Google Scholar 

  6. Udd B, Krahe R (2012) The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 11:891–905

    Article  CAS  PubMed  Google Scholar 

  7. Taneja KL, McCurrach M, Schalling M, Housman D, Singer RH (1995) Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol 128:995–1002

    Article  CAS  PubMed  Google Scholar 

  8. Davis BM, McCurrach ME, Taneja KL, Singer RH, Housman DE (1997) Expansion of CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci USA 94:7388–7393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Mankodi A, Teng-Umnuay P, Krym M, Henderson D, Swanson M, Thornton CA (2003) Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2. Ann Neurol 54:760–768

    Article  CAS  PubMed  Google Scholar 

  10. Cho DH, Tapscott SJ (2007) Myotonic dystrophy: emerging mechanisms for DM1 and DM2. Biochim Biophys Acta 1772:195–204

    Article  CAS  PubMed  Google Scholar 

  11. Philips AV, Timchenko LT, Cooper TA (1998) Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280:737–741

    Article  CAS  PubMed  Google Scholar 

  12. Savkur RS, Philips AV, Cooper TA (2001) Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 29:40–47

    Article  CAS  PubMed  Google Scholar 

  13. Savkur RS, Philips AV, Cooper TA, Dalton JC, Moseley ML, Ranum LP, Day JW (2004) Insulin receptor splicing alteration in myotonic dystrophy type 2. Am J Hum Genet 74:1309–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D, Timmers AM, Hauswirth WW, Swanson MS (2003) A muscleblind knockout model for myotonic dystrophy. Science 302:1978–1980

    Article  CAS  PubMed  Google Scholar 

  15. Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, Cannon SC, Thornton CA (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44

    Article  CAS  PubMed  Google Scholar 

  16. Charlet-B N, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10:45–53

    Article  CAS  PubMed  Google Scholar 

  17. Vihola A, Bassez G, Meola G, Zhang S, Haapasalo H, Paetau A, Mancinelli E, Rouc + he A, Hogrel JY, Laforêt P, Maisonobe T, Pellissier JF, Krahe R, Eymard B, Udd B (2003) Histopathological differences of myotonic dystrophy type 1 (DM1) and PROMM/DM2. Neurology 60:1854–1857

    Article  CAS  PubMed  Google Scholar 

  18. Pisani V, Panico MB, Terracciano C, Bonifazi E, Meola G, Novelli G, Bernardi G, Angelini C, Massa R (2008) Preferential central nucleation of type 2 myofibers is an invariable feature of myotonic dystrophy type 2. Muscle Nerve 38:1405–1411

    Article  PubMed  Google Scholar 

  19. Furling D, Coiffier L, Mouly V, Barbet JP, St Guily JL, Taneja K, Gourdon G, Junien C, Butler-Browne GS (2001) Defective satellite cells in congenital myotonic dystrophy. Hum Mol Genet 10:2079–2087

    Article  CAS  PubMed  Google Scholar 

  20. Buj-Bello A, Furling D, Tronchère H, Laporte J, Lerouge T, Butler-Browne GS, Mandel JL (2002) Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells. Hum Mol Genet 11:2297–2307

    Article  CAS  PubMed  Google Scholar 

  21. Loro E, Rinaldi F, Malena A, Masiero E, Novelli G, Angelini C, Romeo V, Sandri M, Botta A, Vergani L (2010) Normal myogenesis and increased apoptosis in myotonic dystrophy type-1 muscle cells. Cell Death Differ 17:1315–1324

    Article  CAS  PubMed  Google Scholar 

  22. Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, Dirksen RT, Takahashi MP, Dulhunty AF, Sakoda S (2005) Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase in myotonic dystrophy type 1. Hum Mol Genet 14:2189–2200

    Article  CAS  PubMed  Google Scholar 

  23. Santoro M, Modoni A, Masciullo M, Gidaro T, Broccolini A, Ricci E, Tonali PA, Silvestri G (2010) Analysis of MTMR1 expression and correlation with muscle pathological features in juvenile/adult onset myotonic dystrophy type 1 (DM1) and in myotonic dystrophy type 2 (DM2). Exp Mol Pathol 89:158–168

    Article  CAS  PubMed  Google Scholar 

  24. Morrone A, Pegoraro E, Angelini C, Zammarchi E, Marconi G, Hoffman EP (1997) RNA metabolism in myotonic dystrophy: patient muscle shows decreased insulin receptor RNA and protein consistent with abnormal insulin resistance. J Clin Invest 99:1691–1698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vihola A, Bachinski LL, Sirito M, Olufemi SE, Hajibashi S, Baggerly KA, Raheem O, Haapasalo H, Suominen T, Holmlund-Hampf J, Paetau A, Cardani R, Meola G, Kalimo H, Edström L, Krahe R, Udd B (2010) Differences in aberrant expression and splicing of sarcomeric proteins in the myotonic dystrophies DM1 and DM2. Acta Neuropathol 119:465–479

    Article  CAS  PubMed  Google Scholar 

  26. Greco S, Perfetti A, Fasanaro P, Cardani R, Capogrossi MC, Meola G, Martelli F (2012) Deregulated microRNAs in myotonic dystrophy type 2. PLoS ONE 7:e39732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gambardella S, Rinaldi F, Lepore SM, Viola A, Loro E, Angelini C, Vergani L, Novelli G, Botta A (2010) Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients. J Transl Med 20(8):48

    Article  Google Scholar 

  28. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R (2009) Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 30:586–623

    Article  CAS  PubMed  Google Scholar 

  29. Seino S, Bell GI (1989) Alternative splicing of human insulin receptor messenger RNA. Biochem Biophys Res Commun 159:312–316

    Article  CAS  PubMed  Google Scholar 

  30. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  CAS  PubMed  Google Scholar 

  31. Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23:160–170

    Article  CAS  Google Scholar 

  32. Fend F, Emmert-Buck MR, Chuaqui R, Cole K, Lee J, Liotta LA, Raffeld M (1999) Immuno-LCM: laser capture micro dissection of immunostained frozen sections for mRNA analysis. Am J Pathol 154:61–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wang S, Wang L, Zhu T, Gao X, Li J, Wu Y, Zhu H (2010) Improvement of tissue preparation for laser capture microdissection: application for cell type-specific miRNA expression profiling in colorectal tumors. BMC Genomics 11:163

    Article  PubMed Central  PubMed  Google Scholar 

  34. Keays KM, Owens GP, Ritchie AM, Gilden DH, Burgoon MP (2005) Laser capture micro dissection and single-cell RT-PCR without RNA purification. J Immunol Methods 302:90–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wacker MJ, Tehel MM, Gallagher PM (2008) Technique for quantitative RT-PCR analysis directly from single muscle fibers. J Appl Physiol 105:308–315

    Article  CAS  PubMed  Google Scholar 

  36. Dubowitz V (1985) A pratical approach. In: Bailiere Tindall (ed) Muscle biopsy, 2nd edn. Bailliere Tindall, London, pp 45–53

    Google Scholar 

  37. Greenberg SA, Salajegheh M, Judge DP, Feldman MW, Kuncl RW, Waldon Z, Steen H, Wagner KR (2012) Etiology of limb girdle muscular dystrophy 1D/1E determined by laser capture microdissection proteomics. Ann Neurol 71:141–145

    Article  PubMed  Google Scholar 

  38. Orengo JP, Ward AJ, Cooper TA (2011) Alternative splicing dysregulation secondary to skeletal muscle regeneration. Ann Neurol 69:681–690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Raffaele Iorio for the statistic analysis. This work was supported by grants from the Italian Ministry of Scientific Research (linea D1 2010-2011).

Disclosure

All authors have made substantial contributions to this work. All the authors disclose any actual or potential conflict of interest regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Silvestri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2013_1681_MOESM1_ESM.eps

Transverse muscle sections stained for ATPase at pH 9.4 activity. 8 μm-thick Transverse sections of muscle biopsies from two controls (panels a, b), three DM1 (panels c–e, Pt1–3), and three DM2 patients (panels f–h, Pt4–6) routinely stained for ATPase at pH 9.4 activity for diagnostic purposes. Type I fibers appear light and type II fibers dark. Original magnification, ×10. All DM patients show a mild or moderate fiber size variability; note the presence of several atrophic type II fibers in DM2 patients. (EPS 3793 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santoro, M., Masciullo, M., Bonvissuto, D. et al. Alternative splicing of human insulin receptor gene (INSR) in type I and type II skeletal muscle fibers of patients with myotonic dystrophy type 1 and type 2. Mol Cell Biochem 380, 259–265 (2013). https://doi.org/10.1007/s11010-013-1681-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1681-z

Keywords

Navigation