Skip to main content
Log in

Transplantation of microencapsulated Schwann cells and mesenchymal stem cells augment angiogenesis and improve heart function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Because of their plasticity and availability, bone-marrow-derived mesenchymal stem cells (MSC) are a potential cell source for treating ischemic heart disease. Schwann cells (SC) play a critical role in neural remodeling and angiogenesis because of their secretion of cytokines such as vascular endothelial growth factor (VEGF). Cell microencapsulation, surrounding cells with a semipermeable polymeric membrane, is a promising tool to shelter cells from the recipient’s immune system. We investigated whether transplantation of microencapsulated SC (MC-SC) and MSC together could improve heart function by augmenting angiogenesis in acute myocardial infarction (AMI). Sprague–Dawley rats with ligation of the left anterior descending artery to induce AMI were randomly divided for cell transplantation into four groups—MC-SC+MSC, MC+MSC, MSC, MC-SC, and controls. Echocardiography was performed at 3 days and 2 and 4 weeks after AMI. Rat hearts were harvested on day 28 after transplantation and examined by immunohistochemistry and western blot analysis. Echocardiography revealed differences among the groups in fractional shortening and end-systolic and end-diastolic dimensions (P < 0.05). The number of BrdU-positive cells was greater with MC-SC+MSC transplantation than the other groups (P < 0.01). The vessel density and VEGF level in the infarcted zone was significantly increased with MC-SC+MSC transplantation (P < 0.05). These results show that transplanting a combination of MC-SC and MSC could augment angiogenesis and improve heart function in AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gheorghiade M, Bonow RO (1998) Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation 97:282–289

    PubMed  CAS  Google Scholar 

  2. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95

    Article  PubMed  Google Scholar 

  3. Deuse T, Peter C, Fedak PW, Doyle T, Reichenspurner H, Zimmermann WH, Eschenhagen T, Stein W, Wu JC, Robbins RC, Schrepfer S (2009) Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation 120:S247–S254

    Article  PubMed  CAS  Google Scholar 

  4. Pons J, Huang Y, Arakawa-Hoyt J, Washko D, Takagawa J, Ye J, Grossman W, Su H (2008) VEGF improves survival of mesenchymal stem cells in infarcted hearts. Biochem Biophys Res Commun 376:419–422

    Article  PubMed  CAS  Google Scholar 

  5. Takami T, Oudega M, Bates ML, Wood PM, Kleitman N, Bunge MB (2002) Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci 22:6670–6681

    PubMed  CAS  Google Scholar 

  6. Zhang H, Yuan X, Jin PF, Hou JF, Wang W, Wei YJ, Hu SS (2010) Alteration of parasympathetic/sympathetic ratio in the infarcted myocardium after Schwann cell transplantation modified electrophysiological function of heart a novel antiarrhythmic therapy. Circulation 122:S193–S200

    Article  PubMed  Google Scholar 

  7. Hernandez RM, Orive G, Murua A, Pedraz JL (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62:711–730

    Article  PubMed  CAS  Google Scholar 

  8. Wang A, Shen F, Liang Y, Wang J (2011) Marrow-derived MSCs and atorvastatin improve cardiac function in rat model of AMI. Int J Cardiol 150:28–32

    Article  PubMed  Google Scholar 

  9. Rozemuller H, Prins HJ, Naaijkens B, Staal J, Buhring HJ, Martens AC (2010) Prospective isolation of mesenchymal stem cells from multiple mammalian species using cross-reacting anti-human monoclonal antibodies. Stem Cells Dev 19:1911–1921

    Article  PubMed  CAS  Google Scholar 

  10. Brockes JP, Raff MC, Nishiguchi DJ, Winter J (1980) Studies on cultured rat Schwann cells. III. Assays for peripheral myelin proteins. J Neurocytol 9:67–77

    Article  PubMed  CAS  Google Scholar 

  11. He J, Ding WL, Li F, Xia R, Wang WJ, Zhu H (2009) Panaxydol treatment enhances the biological properties of Schwann cells in vitro. Chem Biol Interact 177:34–39

    Article  PubMed  CAS  Google Scholar 

  12. Zhang H, Zhu SJ, Wang W, Wei YJ, Hu SS (2008) Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function. Gene Ther 15:40–48

    Article  PubMed  CAS  Google Scholar 

  13. Su W, Zhang H, Jia Z, Zhou C, Wei Y, Hu S (2006) Cartilage-derived stromal cells: is it a novel cell resource for cell therapy to regenerate infarcted myocardium? Stem Cells 24:349–356

    Article  PubMed  Google Scholar 

  14. Kirschner R, Toth L, Varga-Szemes A, Simor T, Suranyi P, Kiss P, Ruzsics B, Toth A, Baker R, Brott BC, Litovsky S, Elgavish A, Elgavish GA (2010) Differentiation of acute and four-week old myocardial infarct with Gd(ABE-DTTA)-enhanced CMR. J Cardiovasc Magn Reson 12:22

    Article  PubMed  Google Scholar 

  15. Oron U, Yaakobi T, Oron A, Mordechovitz D, Shofti R, Hayam G, Dror U, Gepstein L, Wolf T, Haudenschild C, Haim SB (2001) Low-energy laser irradiation reduces formation of scar tissue after myocardial infarction in rats and dogs. Circulation 103:296–301

    PubMed  CAS  Google Scholar 

  16. Ahmet I, Lakatta EG, Talan MI (2005) Pharmacological stimulation of beta2-adrenergic receptors (beta2AR) enhances therapeutic effectiveness of beta1AR blockade in rodent dilated ischemic cardiomyopathy. Heart Fail Rev 10:289–296

    Article  PubMed  CAS  Google Scholar 

  17. Zhu H, Wang WJ, Ding WL, Li F, He J (2008) Effect of panaxydol on hypoxia-induced cell death and expression and secretion of neurotrophic factors (NTFs) in hypoxic primary cultured Schwann cells. Chem Biol Interact 174:44–50

    Article  PubMed  CAS  Google Scholar 

  18. Zhang G, Zhou J, Fan Q, Zheng Z, Zhang F, Liu X, Hu S (2008) Arterial-venous endothelial cell fate is related to vascular endothelial growth factor and Notch status during human bone mesenchymal stem cell differentiation. FEBS Lett 582:2957–2964

    Article  PubMed  CAS  Google Scholar 

  19. Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ (2002) Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109:693–705

    Article  PubMed  CAS  Google Scholar 

  20. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910

    Article  PubMed  CAS  Google Scholar 

  21. Chayosumrit M, Tuch B, Sidhu K (2010) Alginate microcapsule for propagation and directed differentiation of hESCs to definitive endoderm. Biomaterials 31:505–514

    Article  PubMed  CAS  Google Scholar 

  22. Murua A, Orive G, Hernandez RM, Pedraz JL (2009) Xenogeneic transplantation of erythropoietin-secreting cells immobilized in microcapsules using transient immunosuppression. J Control Release 137:174–178

    Article  PubMed  CAS  Google Scholar 

  23. Peduto G, Rinsch C, Schneider BL, Rolland E, Aebischer P (2000) Long-term host unresponsiveness to encapsulated xenogeneic myoblasts after transient immunosuppression. Transplantation 70:78–85

    PubMed  CAS  Google Scholar 

  24. Murua A, Portero A, Orive G, Hernandez RM, de Castro M, Pedraz JL (2008) Cell microencapsulation technology: towards clinical application. J Control Release 132:76–83

    Article  PubMed  CAS  Google Scholar 

  25. Tang J, Wang J, Zheng F, Kong X, Guo L, Yang J, Zhang L, Huang Y (2010) Combination of chemokine and angiogenic factor genes and mesenchymal stem cells could enhance angiogenesis and improve cardiac function after acute myocardial infarction in rats. Mol Cell Biochem 339:107–118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30971676) and the Shandong distinguished middle-aged and Young scientist encourage and reward foundation (No. BS2011SW038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanxin Fan.

Additional information

Yan Wang and Gang Zhang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhang, G., Hou, Y. et al. Transplantation of microencapsulated Schwann cells and mesenchymal stem cells augment angiogenesis and improve heart function. Mol Cell Biochem 366, 139–147 (2012). https://doi.org/10.1007/s11010-012-1291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1291-1

Keywords

Navigation