Skip to main content
Log in

TOP2 gene is involved in the pathogenicity of Candida albicans

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Candida albicans is a common cause of morbidity in hospitalized and immunosuppressed patients. There are still many unknown genes involved in the virulence of C. albicans. The present study aims to examine the effect of TOP2 gene in candidal virulence, including hyphal growth, phospholipase and proteinase activity. Targeted gene disruption of both TOP2 alleles in a wild-type strain of C. albicans produced hyphae more efficiently. TOP2 disruption also increased phospholipase and proteinase activities, and enhanced virulence as assessed by host tissue colonization in systemic infection model. The result of reverse transcription PCR displayed that PLB1 and SAP4 expressions of top2 mutants was significantly upregulated when compared with the isogenic parental strain. Together, these results indicated that TOP2 gene was involved in candidal pathogenicity, and the major reasons for the comparatively high virulence of null mutants were the higher capacity to produce hyphae and the increased phospholipase and proteinase activities, at least in part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ellis M (2002) Invasive fungal infections: evolving challenges for diagnosis and therapeutics. Mol Immunol 38:947–957

    Article  PubMed  CAS  Google Scholar 

  2. Nailis H, Kucharíková S, Řičicová M, Dijck PV, Deforce D, Nelis H, Coenye T (2010) Real- time PCR expression profiling of genesencoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol 10:114–125

    Article  PubMed  Google Scholar 

  3. Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9:327–335

    Article  PubMed  CAS  Google Scholar 

  4. Georgopapadakou NH, Walsh TJ (1996) Antifungal agents: chemotherapeutic targets and immunologic strategies. Antimicrob Agents Chemother 40:279–291

    PubMed  CAS  Google Scholar 

  5. Ernst JF (2000) Transcription factors in Candida albicans-environmental control of morphogenesis. Microbiology 146:1763–1774

    PubMed  CAS  Google Scholar 

  6. Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    Article  PubMed  CAS  Google Scholar 

  7. Songer JG (1997) Bacterial phospholipases and their role in virulence. Trends Microbiol 5:156–161

    Article  PubMed  CAS  Google Scholar 

  8. Schmiel DH, Miller VL (1999) Bacterial phospholipases and pathogenesis. Microbes Infect 1:1103–1112

    Article  PubMed  CAS  Google Scholar 

  9. Monod M (1994) Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol 13:357–368

    Article  PubMed  CAS  Google Scholar 

  10. Watt PM, Hickson ID (1994) Structure and function of type II DNA topoisomerases. Biochem J 303:681–695

    PubMed  CAS  Google Scholar 

  11. Beatrice AK, Sandhiya P, Mark F (1997) Molecular cloning and expression of the Candida albicans TOP2 gene allows study of fungal DNA topoisomerase II inhibitors in yeast. Biochem J 324:329–339

    Google Scholar 

  12. Zheng H, Jiang YY, Wang Y, Gao PH, Yan L, Jiang LH, Ji H, Cao YB (2010) TOP2 gene disruption reduces drug susceptibility by increasing intracellular ergosterol biosynthesis in Candida albicans. J Med Microbiol 59:797–803

    Article  PubMed  CAS  Google Scholar 

  13. Fekete FK, Gyure L, Lenkey B (2000) Changes of virulence factors accompanying the phenomenon of induced fluconazole resistance in Candida albicans. Mycoses 43(7–8):273–279

    Article  Google Scholar 

  14. Lee KL, Buckley HR, Campbell C (1975) An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13:148–153

    Article  PubMed  CAS  Google Scholar 

  15. Liu H, Köhler J, Fink GR (1994) Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1726

    Article  PubMed  CAS  Google Scholar 

  16. Price MF, Wilkinson ID, Gentry LO (1982) Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia 20:7–14

    Article  PubMed  CAS  Google Scholar 

  17. Mullick A, Elias M, Picard S, Bourget L, Jovcevski O, Gauthier S, Tuite A, Harakidas P, Bihun C, Massie B, Gros P (2004) Dysregulated inflammatory response to Candida albicans in a C5-deficient mouse strain. Infect Immun 72:5868–5876

    Article  PubMed  CAS  Google Scholar 

  18. Marianne D, de Hoogt RA, Froyen G, Odds FC, Simons F, Contreras R, Luyten WH (2000) Single allele knock-out of Candida albicans CGT1 leads to unexpected resistance to hygromycin B and elevated temperature. Microbiology 146:353–365

    Google Scholar 

  19. Steven DL, Ashraf SI, Yue F, Anjni K, Chad J, John V, William F, Fariba M, Shigeru N, Yoshinori N, Mahmoud AG (1998) Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Bio Chem 273:26078–26086

    Article  Google Scholar 

  20. Gale CA, Bendel CM, McClellan M, Hauser M, Becker JM, Berman J, Hostetter MK (1998) Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279:1355–1358

    Article  PubMed  CAS  Google Scholar 

  21. Brand A, MacCallum DM, Brown AJ, Gow NA, Odds FC (2004) Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 3:900–909

    Article  PubMed  CAS  Google Scholar 

  22. Hoover CI, Jantapour MJ, Newport G, Agabian N, Fisher SJ (1998) Cloning and regulated expression of the Candida albicans phospholipase B (PLB1) gene. FEMS Microbiol Lett 167:163–169

    Article  PubMed  CAS  Google Scholar 

  23. Cutler JE (1991) Putative virulence factors of Candida albicans. Annu Rev Microbiol 45:187–218

    Article  PubMed  CAS  Google Scholar 

  24. Alistair JP, Neil Brown, Gow AR (1999) Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7:333–338

    Article  Google Scholar 

  25. Stephanie T, Ganchimeg I, Audrey B, Marianne K (2006) Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. Int J Med Microbiol 296:405–420

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81101298), Special Project for Central Institution of Higher Learning Scientific Research (11D10518). The authors thank YY Jiang (Second Military Medical University, Shanghai, China) for kindly providing some C. albicans strains used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H., Yu, Ys. TOP2 gene is involved in the pathogenicity of Candida albicans . Mol Cell Biochem 364, 45–52 (2012). https://doi.org/10.1007/s11010-011-1203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1203-9

Keywords

Navigation