Skip to main content

Advertisement

Log in

Accumulation of the SET protein in HEK293T cells and mild oxidative stress: cell survival or death signaling

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

SET protein (I2PP2A) is an inhibitor of PP2A, which regulates the phosphorylated Akt (protein kinase B) levels. We assessed the effects of SET overexpression in HEK293T cells, both in the presence and the absence of mild oxidative stress induced by 50 μM tert-butyl hydroperoxide. Immunoblotting assays demonstrated that SET accumulated in HEK293T cells and increased the levels of phosphorylated Akt and PTEN; in addition, SET decreased glutathione antioxidant defense of cell and increased expression of genes encoding antioxidant defense proteins. Immunofluorescence analysis demonstrated that accumulated SET was equally distributed in cytoplasm and nucleus; however, in cells that had been exposed to oxidative stress, SET was found in large aggregates in the cytoplasm. SET accumulation in HEK293T cells correlated with inhibition of basal apoptosis as evidenced by a decrease in annexin V staining and activity of caspases; under mild oxidative stress, SET accumulation correlated with caspase-independent cell death, as evidenced by increased PI and annexin V/PI double staining. The results suggest that accumulated SET could act via Akt/PTEN either as cell survival signal or as oxidative stress sensor for cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88(4):435–437. doi:10.1016/S0092-8674(00)81883-8

    Article  PubMed  CAS  Google Scholar 

  2. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95(1):29–39. doi:10.1016/S0092-8674(00)81780-8

    Article  PubMed  CAS  Google Scholar 

  3. Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY, Chiang CW (2008) Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol Chem 283(4):1882–1892. doi:10.1074/jbc.M709585200

    Article  PubMed  CAS  Google Scholar 

  4. Li M, Damuni Z (1998) I1PP2A and I2PP2A. Two potent protein phosphatase 2A-specific inhibitor proteins. Methods Mol Biol 93:59–66

    PubMed  CAS  Google Scholar 

  5. ten Klooster JP, Leeuwen I, Scheres N, Anthony EC, Hordijk PL (2007) Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene SET. EMBO J 26(2):336–345. doi:10.1038/sj.emboj.7601518

    Article  PubMed  Google Scholar 

  6. Canela N, Rodriguez-Vilarrupla A, Estanyol JM, Diaz C, Pujol MJ, Agell N, Bachs O (2003) The SET protein regulates G2/M transition by modulating cyclin B-cyclin-dependent kinase 1 activity. J Biol Chem 278(2):1158–1164. doi:10.1074/jbc.M207497200

    Article  PubMed  CAS  Google Scholar 

  7. Fukukawa C, Shima H, Tanuma N, Okada T, Kato N, Adachi Y, Kikuchi K (2005) The oncoprotein I-2PP2A/SET negatively regulates the MEK/ERK pathway and cell proliferation. Int J Oncol 26(3):751–756

    PubMed  CAS  Google Scholar 

  8. Zhao T, Zhang H, Guo Y, Zhang Q, Hua G, Lu H, Hou Q, Liu H, Fan Z (2007) Granzyme K cleaves the nucleosome assembly protein SET to induce single-stranded DNA nicks of target cells. Cell Death Differ 14(3):489–499. doi:10.1038/sj.cdd.4402040

    Article  PubMed  CAS  Google Scholar 

  9. Patel V, Hood BL, Molinolo AA, Lee NH, Conrads TP, Braisted JC, Krizman DB, Veenstra TD, Gutkind JS (2008) Proteomic analysis of laser-captured paraffin-embedded tissues: a molecular portrait of head and neck cancer progression. Clin Cancer Res 14(4):1002–1014. doi:10.1158/1078-0432.CCR-07-1497

    Article  PubMed  CAS  Google Scholar 

  10. Madeira A, Pommet JM, Prochiantz A, Allinquant B (2005) SET protein (TAF1beta, I2PP2A) is involved in neuronal apoptosis induced by an amyloid precursor protein cytoplasmic subdomain. FASEB J 19(13):1905–1907. doi:10.1096/fj.05-3839fje

    PubMed  CAS  Google Scholar 

  11. Constantinou C, Papas KA, Constantinou AI (2009) Caspase-independent pathways of programmed cell death: the unraveling of new targets of cancer therapy? Curr Cancer Drug Targets 9(6):717–728

    Article  PubMed  CAS  Google Scholar 

  12. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  13. Pani G, Galeotti T, Chiarugi P (2010) Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev 29(2):351–378. doi:10.1007/s10555-010-9225-4

    Article  PubMed  CAS  Google Scholar 

  14. Antico Arciuch VG, Galli S, Franco MC, Lam PY, Cadenas E, Carreras MC, Poderoso JJ (2009) Akt1 intramitochondrial cycling is a crucial step in the redox modulation of cell cycle progression. PLoS One 4(10):e7523. doi:10.1371/journal.pone.0007523

    Article  PubMed  Google Scholar 

  15. Chetram MA, Don-Salu-Hewage AS, Hinton CV (2011) ROS enhances CXCR4-mediated functions through inactivation of PTEN in prostate cancer cells. Biochem Biophys Res Commun 410(2):195–200. doi:10.1016/j.bbrc.2011.05.074

    Article  PubMed  CAS  Google Scholar 

  16. Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51(3):187–200. doi:10.1016/j.vascn.2004.08.014

    Article  PubMed  CAS  Google Scholar 

  17. Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS (2009) mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5(3):279–289. doi:10.1016/j.stem.2009.06.017

    Article  PubMed  CAS  Google Scholar 

  18. Yuan JS, Reed A, Chen F, Stewart CN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85. doi:10.1186/1471-2105-7-85

    Article  PubMed  Google Scholar 

  19. Zhu Y, Hoell P, Ahlemeyer B, Sure U, Bertalanffy H, Krieglstein J (2007) Implication of PTEN in production of reactive oxygen species and neuronal death in in vitro models of stroke and Parkinson’s disease. Neurochem Int 50(3):507–516. doi:10.1016/j.neuint.2006.10.010

    Article  PubMed  CAS  Google Scholar 

  20. Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275(5300):665–668. doi:10.1126/science.275.5300.665

    Article  PubMed  CAS  Google Scholar 

  21. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7(2):97–110. doi:10.1016/j.drup.2004.01.004

    Article  PubMed  CAS  Google Scholar 

  22. Aliev G (2011) Oxidative stress induced-metabolic imbalance, mitochondrial failure, and cellular hypoperfusion as primary pathogenetic factors for the development of Alzheimer disease which can be used as a alternate and successful drug treatment strategy: past, present and future. CNS Neurol Disord Drug Targets 10(2):147–148

    PubMed  CAS  Google Scholar 

  23. Harrison EM, Sharpe E, Bellamy CO, McNally SJ, Devey L, Garden OJ, Ross JA, Wigmore SJ (2008) Heat shock protein 90-binding agents protect renal cells from oxidative stress and reduce kidney ischemia-reperfusion injury. Am J Physiol Renal Physiol 295(2):F397–F405. doi:10.1152/ajprenal.00361.2007

    Article  PubMed  CAS  Google Scholar 

  24. Chohan MO, Khatoon S, Iqbal IG, Iqbal K (2006) Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by Memantine. FEBS Lett 580(16):3973–3979. doi:10.1016/j.febslet.2006.06.021

    Article  PubMed  CAS  Google Scholar 

  25. Carlson SG, Eng E, Kim EG, Perlman EJ, Copeland TD, Ballermann BJ (1998) Expression of SET, an inhibitor of protein phosphatase 2A, in renal development and Wilms’ tumor. J Am Soc Nephrol 9(10):1873–1880

    PubMed  CAS  Google Scholar 

  26. Li M, Makkinje A, Damuni Z (1996) The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem 271(19):11059–11062. doi:10.1074/jbc.271.19.11059

    Article  PubMed  CAS  Google Scholar 

  27. Tanimukai H, Grundke-Iqbal I, Iqbal K (2005) Up-regulation of inhibitors of protein phosphatase-2A in Alzheimer’s disease. Am J Pathol 166(6):1761–1771. doi:10.1016/S0002-9440(10)62486-8

    Article  PubMed  CAS  Google Scholar 

  28. Chen H, Zhou L, Lin CY, Beattie MC, Liu J, Zirkin BR (2010) Effect of glutathione redox state on Leydig cell susceptibility to acute oxidative stress. Mol Cell Endocrinol 323(2):147–154. doi:10.1016/j.mce.2010.02.034

    Article  PubMed  CAS  Google Scholar 

  29. Walsh B, Pearl A, Suchy S, Tartaglio J, Visco K, Phelan S (2009) Overexpression of Prdx6 and resistance to peroxide-induced death in Hepa1–6 cells: Prdx suppression increases apoptosis. Redox Rep 14(6):275–284. doi:10.1179/135100009X12525712409652

    Article  PubMed  CAS  Google Scholar 

  30. Skrzycki M, Majewska M, Podsiad M, Czeczot H (2009) Expression and activity of superoxide dismutase isoenzymes in colorectal cancer. Acta Biochim Pol 56(4):663–670

    PubMed  CAS  Google Scholar 

  31. Welsh S, Bellamy W, Briehl M, Powis G (2002) The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 62(17):5089–5095

    PubMed  CAS  Google Scholar 

  32. Azzu V, Jastroch M, Divakaruni A, Brand M (2010) The regulation and turnover of mitochondrial uncoupling proteins. Biochim Biophys Acta. doi:10.1016/j.bbabio.2010.02.035

  33. Himms-Hagen J, Harper M (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood) 226(2):78–84

    CAS  Google Scholar 

  34. Huppertz C, Fischer B, Kim Y, Kotani K, Vidal-Puig A, Slieker L, Sloop K, Lowell B, Kahn B (2001) Uncoupling protein 3 (UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism. J Biol Chem 276(16):12520–12529. doi:10.1074/jbc.M011708200

    Article  PubMed  CAS  Google Scholar 

  35. Kim D, Oh B, Kim Y (2009) Splicing factor ASF/SF2 and transcription factor PPAR-gamma cooperate to directly regulate transcription of uncoupling protein-3. Biochem Biophys Res Commun 378(4):877–882. doi:10.1016/j.bbrc.2008.12.009

    Article  PubMed  CAS  Google Scholar 

  36. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR (2000) Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20(14):5010–5018

    Article  PubMed  CAS  Google Scholar 

  37. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP, Tonks NK (1998) The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA 95(23):13513–13518. doi:10.1073/pnas.95.23.13513

    Article  PubMed  CAS  Google Scholar 

  38. Song MS, Carracedo A, Salmena L, Song SJ, Egia A, Malumbres M, Pandolfi PP (2011) Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independent manner. Cell 144(2):187–199. doi:10.1016/j.cell.2010.12.020

    Article  PubMed  CAS  Google Scholar 

  39. Choi YC, Lee JH, Hong KW, Lee KS (2004) 17 Beta-estradiol prevents focal cerebral ischemic damages via activation of Akt and CREB in association with reduced PTEN phosphorylation in rats. Fundam Clin Pharmacol 18(5):547–557. doi:10.1111/j.1472-8206.2004.00284.x

    Article  PubMed  CAS  Google Scholar 

  40. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51. doi:10.1016/0022-1759(95)00072-I

    Article  PubMed  CAS  Google Scholar 

  41. Bröker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11(9):3155–3162. doi:10.1158/1078-0432.CCR-04-2223

    Article  PubMed  Google Scholar 

  42. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392):1318–1321. doi:10.1126/science.282.5392.1318

    Article  PubMed  CAS  Google Scholar 

  43. Gao Y, Ordas R, Klein JD, Price SR (2008) Regulation of caspase-3 activity by insulin in skeletal muscle cells involves both PI3-kinase and MEK-1/2. J Appl Physiol 105(6):1772–1778. doi:10.1152/japplphysiol.90636.2008

    Article  PubMed  CAS  Google Scholar 

  44. Liu GP, Wei W, Zhou X, Zhang Y, Shi HH, Yin J, Yao XQ, Peng CX, Hu J, Wang Q, Li HL, Wang JZ (2010) I(2)(PP2A) regulates p53 and Akt correlatively and leads the neurons to abort apoptosis. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2010.01.016

  45. Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A, Pinton P (2011) Protein kinases and phosphatases in the control of cell fate. Enzyme Res 2011:329098. doi:10.4061/2011/329098

    PubMed  Google Scholar 

  46. Fan C, He L, Kapoor A, Rybak AP, De Melo J, Cutz JC, Tang D (2009) PTEN inhibits BMI1 function independently of its phosphatase activity. Mol Cancer 8:98. doi:10.1186/1476-4598-8-98

    Article  PubMed  Google Scholar 

  47. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y (2007) Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128(1):157–170. doi:10.1016/j.cell.2006.11.042

    Article  PubMed  CAS  Google Scholar 

  48. Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?−Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol 19(1):25–31. doi:10.1016/j.semcancer.2008.11.010

    Article  PubMed  CAS  Google Scholar 

  49. Chung SH (2009) Aberrant phosphorylation in the pathogenesis of Alzheimer’s disease. BMB Rep 42(8):467–474

    Article  PubMed  CAS  Google Scholar 

  50. Ming M, Feng L, Shea CR, Soltani K, Zhao B, Han W, Smart RC, Trempus CS, He YY (2011) PTEN positively regulates UVB-induced DNA damage repair. Cancer Res 71(15):5287–5295. doi:10.1158/0008-5472.CAN-10-4614

    Article  PubMed  CAS  Google Scholar 

  51. Kodera Y, Isobe K, Yamauchi M, Kondoh K, Kimura N, Akiyama S, Itoh K, Nakashima I, Takagi H (1994) Expression of nm23 H-1 RNA levels in human gastric cancer tissues. A negative correlation with nodal metastasis. Cancer 73(2):259–265. doi:10.1007/BF00309953

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by FAPESP (Fellowship 2005/03380-2, Young research project 2006/06334-4, Grant 2009/52228-0), CNPq, CAPES and the Intramural Research Program of NIH, National Institute of Dental and Craniofacial Research. The authors thank Fabiana R. Morais for technical support with the FACS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andréia M. Leopoldino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leopoldino, A.M., Squarize, C.H., Garcia, C.B. et al. Accumulation of the SET protein in HEK293T cells and mild oxidative stress: cell survival or death signaling. Mol Cell Biochem 363, 65–74 (2012). https://doi.org/10.1007/s11010-011-1158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1158-x

Keywords

Profiles

  1. J. Silvio Gutkind