Skip to main content

Advertisement

Log in

Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To characterize the roles of tribble 2 (TRB2) and its targeted microRNAs (miRNAs) in the pathogenesis of the early vascular injury involved in diabetic-2 rat. Goto-Kakizaki (GK) rat and Wistar rat were used as the animal models. Each eligible rat was killed and the rat aorta tissues were analyzed by immunohistochemistry, ELISA, reverse transcription-polymerase chain reaction (RT-PCR), and real-time PCR detection. GFP expression in RAOEC cells (rat vascular aortic endothelial cell)were detected by flow cytometry and fluorescent microscope. TRB2 gene expression was increased in endothelia cell and the adventitia of Goto-Kakizaki (GK) rat compared with Wistar rat. Next, studies using RAOEC cells showed that the TRB2 expression was inhibited by the treatment of miR-98. We further showed that the expression of miR-98 was significantly decreased in the adventitia and endomembrane at different degrees in GK rats compared with control. Finally, we validated the changes in TRB2 by studying one of the TRB2’s substrates, Akt, in animal models. We expected a corresponding change in the levels of phosphorylated Akt. Indeed, our results showed that the phosphorylation of Akt at Thr 308 in the endothelial cells and phosphorylation of Akt at Ser 473 in adventitia was decreased in GK rats, compared with Wistar control. TRB2 plays important roles in the pathogenesis of diabetic-2 large artery complications at early stage, and these effects may be modulated by miR-98. Thus, targeting TRB2 and miR-98 could be considered as novel therapeutic strategies for the early large artery deficits in diabetic-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TRB2:

Tribble 2

miRNAs:

MicroRNAs

GK rat:

Goto-Kakizaki rat

ELISA:

Enzyme-linked immunosorbent assay

NIDDM:

Non-insulin-dependent diabetes mellitus

RT-PCR:

Reverse transcription-polymerase chain reaction

HE:

Hematoxylin and eosin

siRNA:

Small interfering RNA

Ang II:

Angiotensin II

NOD:

Non-obese diabetic

References

  1. Kim JA, Montagnani M, Koh KK, Quon MJ (2006) Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 113:1888–1904

    Article  PubMed  Google Scholar 

  2. Matsumoto T, Kobayashi T, Kamata K (2008) Relationships among ET-1, PPARgamma, oxidative stress and endothelial dysfunction in diabetic animals. J Smooth Muscle Res 44:41–55

    Article  PubMed  Google Scholar 

  3. Matsumoto T, Nakayama N, Ishida K, Kobayashi T, Kamata K (2009) Eicosapentaenoic acid improves imbalance between vasodilator and vasoconstrictor actions of endothelium-derived factors in mesenteric arteries from rats at chronic stage of type 2 diabetes. J Pharmacol Exp Ther 329:324–334

    Article  PubMed  CAS  Google Scholar 

  4. Mata J, Curado S, Ephrussi A, Rørth P (2000) Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell 101:511–522

    Article  PubMed  CAS  Google Scholar 

  5. Seher TC, Leptin M (2000) Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Curr Biol 10:623–629

    Article  PubMed  CAS  Google Scholar 

  6. Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR (2006) Emerging roles of pseudokinases. Trends Cell Biol 16:443–452

    Article  PubMed  CAS  Google Scholar 

  7. Ashton-Chess J, Giral M, Mengel M et al (2008) Tribbles-1 as a novel biomarker of chronic antibody-mediated rejection. J Am Soc Nephrol 19:1116–1127

    Article  PubMed  CAS  Google Scholar 

  8. Qi L, Heredia JE, Altarejos JY et al (2006) TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science 312:1763–1766

    Article  PubMed  CAS  Google Scholar 

  9. Shang YY, Zhong M, Zhang LP et al (2010) Tribble 3, a novel oxidized low-density lipoprotein-inducible gene, is induced via the activating transcription factor 4-C/EBP homologous protein pathway. Clin Exp Pharmacol Physiol 37:51–55

    Article  PubMed  CAS  Google Scholar 

  10. Wilkin F, Savonet V, Radulescu A, Petermans J, Dumont JE, Maenhaut C (1996) Identification and characterization of novel genes modulated in the thyroid of dogs treated with methimazole and propylthiouracil. J Biol Chem 271:28451–28457

    Article  PubMed  CAS  Google Scholar 

  11. Wilkin F, Suarez-Huerta N, Robaye B, Peetermans J, Libert F, Dumont JE, Maenhaut C (1997) Characterization of a phosphoprotein whose mRNA is regulated by the mitogenic pathways in dog thyroid cells. Eur J Biochem 248:660–668

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Davis JL, Li W (2005) Identification of tribbles homolog 2 as an autoantigen in autoimmune uveitis by phage display. Mol Immunol 42:1275–1281

    Article  PubMed  CAS  Google Scholar 

  13. Sung HY, Francis SE, Crossman DC, Kiss-Toth E (2006) Regulation of expression and signalling modulator function of mammalian tribbles is cell-type specific. Immunol Lett 104:171–177

    Article  PubMed  CAS  Google Scholar 

  14. Kim JA, Montagnani M, Koh KK, Quon MJ (2006) Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 113:1888–1904

    Article  PubMed  Google Scholar 

  15. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  PubMed  CAS  Google Scholar 

  16. Goto Y, Kakizaki M, Masaki N (1976) Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 119:85–90

    Article  PubMed  CAS  Google Scholar 

  17. Gauguier D, Froguel P, Parent V et al (1996) Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nat Genet 12:38–43

    Article  PubMed  CAS  Google Scholar 

  18. Stary HC, Chandler AB, Glagov S et al (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb 14:840–856

    Article  PubMed  CAS  Google Scholar 

  19. Stary HC, Chandler AB, Glagov S et al (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89:2462–2478

    PubMed  CAS  Google Scholar 

  20. Park SY, Lee JH, Ha M, Nam JW, Kim VN (2009) miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16:23–29

    Article  PubMed  CAS  Google Scholar 

  21. Peng XD, Xu PZ, Chen ML et al (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17:1352–1365

    Article  PubMed  CAS  Google Scholar 

  22. Du K, Herzig S, Kulkarni RN, Montminy M (2003) TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300:1574–1577

    Article  PubMed  CAS  Google Scholar 

  23. Naiki T, Saijou E, Miyaoka Y, Sekine K, Miyajima A (2007) TRB2, a mouse Tribbles ortholog, suppresses adipocyte differentiation by inhibiting AKT and C/EBPbeta. J Biol Chem 282:24075–24082

    Article  PubMed  CAS  Google Scholar 

  24. McIntyre M, Bohr DF, Dominiczak AF (1999) Endothelial function in hypertension: the role of superoxide anion. Hypertension 34:539–545

    PubMed  CAS  Google Scholar 

  25. Romero JC, Reckelhoff JF (1999) Role of angiotensin and oxidative stress in essential hypertension. Hypertension 34:943–949

    PubMed  CAS  Google Scholar 

  26. Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43:562–571

    Article  PubMed  CAS  Google Scholar 

  27. Liu Y, Chen Q, Song Y, Lai L, Wang J, Yu H, Cao X, Wang Q (2011) MicroRNA-98 negatively regulates IL-10 production and endotoxin tolerance in macrophages after LPS stimulation. FEBS Lett 585:1963–1968

    Article  PubMed  CAS  Google Scholar 

  28. Deng J, James CH, Patel L et al (2009) Human tribbles homologue 2 is expressed in unstable regions of carotid plaques and regulates macrophage IL-10 in vitro. Clin Sci (Lond) 116:241–248

    Article  CAS  Google Scholar 

  29. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    Article  PubMed  CAS  Google Scholar 

  30. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14:381–395

    Article  PubMed  CAS  Google Scholar 

  31. Neri LM, Borgatti P, Capitani S, Martelli AM (2002) The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. Biochim Biophys Acta 1584:73–80

    PubMed  CAS  Google Scholar 

  32. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  PubMed  CAS  Google Scholar 

  33. Hanada M, Feng J, Hemmings BA (2004) Structure, regulation and function of PKB/AKT–a major therapeutic target. Biochim Biophys Acta 1697:3–16

    PubMed  CAS  Google Scholar 

  34. Asano T, Fujishiro M, Kushiyama A, Nakatsu Y, Yoneda M, Kamata H, Sakoda H (2007) Role of phosphatidylinositol 3-kinase activation on insulin action and its alteration in diabetic conditions. Biol Pharm Bull 30:1610–1616

    Article  PubMed  CAS  Google Scholar 

  35. Kobayashi T, Taguchi K, Nemoto S, Nogami T, Matsumoto T, Kamata K (2009) Activation of the PDK-1/Akt/eNOS pathway involved in aortic endothelial function differs between hyperinsulinemic and insulin-deficient diabetic rats. Am J Physiol Heart Circ Physiol 297:H1767–H1775

    Article  PubMed  CAS  Google Scholar 

  36. Takenouchi Y, Kobayashi T, Matsumoto T, Kamata K (2008) Possible involvement of Akt activity in endothelial dysfunction in type 2 diabetic mice. J Pharmacol Sci 106:600–608

    Article  PubMed  CAS  Google Scholar 

  37. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  38. Krützfeldt J, Stoffel M (2006) MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab 4:9–12

    Article  PubMed  Google Scholar 

  39. Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS (2007) MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes 56:2938–2945

    Article  PubMed  CAS  Google Scholar 

  40. Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    Article  PubMed  CAS  Google Scholar 

  41. He A, Zhu L, Gupta N, Chang Y, Fang F (2007) Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3–L1 adipocytes. Mol Endocrinol 21:2785–2794

    Article  PubMed  CAS  Google Scholar 

  42. Goto Y, Kakizaki M, Masaki N (1976) Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 119:85–90

    Article  PubMed  CAS  Google Scholar 

  43. Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, Regazzi R (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59:978–986

    Article  PubMed  CAS  Google Scholar 

  44. Yang Y, Ago T, Zhai P, Abdellatif M, Sadoshima J (2011) Thioredoxin 1 negatively regulates angiotensin II-induced cardiac hypertrophy through upregulation of miR-98/let-7. Circ Res 108:305–313

    Article  PubMed  CAS  Google Scholar 

  45. Wendler A, Keller D, Albrecht C, Peluso JJ, Wehling M (2011) Involvement of let-7/miR-98 microRNAs in the regulation of progesterone receptor membrane component 1 expression in ovarian cancer cells. Oncol Rep 25:273–279

    PubMed  CAS  Google Scholar 

  46. Hu G, Zhou R, Liu J, Gong AY, Chen XM (2010) MicroRNA-98 and let-7 regulate expression of suppressor of cytokine signaling 4 in biliary epithelial cells in response to Cryptosporidium parvum infection. J Infect Dis 202:125–135

    Article  PubMed  CAS  Google Scholar 

  47. Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ (2007) High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 6:5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the NCET-10-0919 and National Natural Science Foundation (no.30801324), the “Taishan scholar” position and Shandong Science and Technology Committee (no.2007BS03048, ZR2009CQ033, ZR2009CL005) and the Yantai Science and Technology Committee (no. 2007153, 2008162) of China.

Conflict of interests

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuyang Xie or Changjun Lv.

Additional information

Shuyang Xie and Ning Xie contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6982 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, S., Xie, N., Li, Y. et al. Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat. Mol Cell Biochem 361, 305–314 (2012). https://doi.org/10.1007/s11010-011-1116-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1116-7

Keywords

Navigation