Skip to main content

Advertisement

Log in

Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sleijfer DT, Meijer S, Mulder NH (1985) Cisplatin: a review of clinical applications and renal toxicity. Pharm World Sci 7:237–244

    CAS  Google Scholar 

  2. Miyajima A, Nakashima J, Yoshioka K, Tachibana M, Tazaki H, Mural M (1997) Role of reactive oxygen species in cis-dichlorodiammineplatinum-induced cytotoxicity on bladder cancer cells. Br J Cancer 76:206–210

    Article  PubMed  CAS  Google Scholar 

  3. Bragado P, Armesilla A, Silva A, Porras A (2007) Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation. Apoptosis 12:1733–1742

    Article  PubMed  CAS  Google Scholar 

  4. Wang L, Chanvorachote P, Toledo D, Stehlik C, Mercer RR, Castranova V, Rojanasakul Y (2008) Peroxide is a key mediator of Bcl-2 down-regulation and apoptosis induction by cisplatin in human lung cancer cells. Mol Pharmacol 73:119–127

    Article  PubMed  CAS  Google Scholar 

  5. Chanvorachote P, Nimmannit U, Stehlik C et al (2006) Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res 66:6353–6360

    Article  PubMed  CAS  Google Scholar 

  6. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    PubMed  CAS  Google Scholar 

  7. Halliwell B (2007) Biochemistry of oxidative stress. Biochem Soc Trans 35:1147–1150

    Article  PubMed  CAS  Google Scholar 

  8. Laurent A, Nicco C, Chéreau C et al (2005) Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65:948–956

    PubMed  CAS  Google Scholar 

  9. Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896

    Article  PubMed  CAS  Google Scholar 

  10. Teramoto S, Tomita T, Matsui H, Ohga E, Matsuse T, Ouchi Y (1999) Hydrogen peroxide-induced apoptosis and necrosis in human lung fibroblasts: protective roles of glutathione. Jpn J Pharmacol 79:33–40

    Article  PubMed  CAS  Google Scholar 

  11. Jiang M, Wei Q, Pabla N et al (2007) Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol 73:1499–1510

    Article  PubMed  CAS  Google Scholar 

  12. Ngo C, Chereau C, Nicco C, Weill B, Chapron C, Batteux F (2009) Reactive oxygen species controls endometriosis progression. Am J Pathol 175:225–234

    Article  PubMed  CAS  Google Scholar 

  13. Burgermeister E, Liscovitch M, Röcken C, Schmid RM, Ebert MPA (2008) Caveats of caveolin-1 in cancer progression. Cancer Lett 268:187–201

    Article  PubMed  CAS  Google Scholar 

  14. Couet J, Belanger MM, Roussel E, Drolet MC (2001) Cell biology of caveolae and caveolin. Adv Drug Deliv Rev 49:223–235

    Article  PubMed  CAS  Google Scholar 

  15. Ravid D, Maor S, Werner H, Liscovitch M (2006) Caveolin-1 inhibits anoikis and promotes survival signaling in cancer cells. Adv Enzym Regul 46:163–175

    Article  CAS  Google Scholar 

  16. Wu P, Wang X, Li F et al (2008) Growth suppression of MCF-7 cancer cell-derived xenografts in nude mice by caveolin-1. Biochem Biophys Res Commun 376:215–220

    Article  PubMed  CAS  Google Scholar 

  17. Chanvorachote P, Nimmannit U, Lu Y, Talbott S, Jiang B-H, Rojanasakul Y (2009) Nitric oxide regulates lung carcinoma cell anoikis through inhibition of ubiquitin-proteasomal degradation of caveolin-1. J Biol Chem 284:28476–28484

    Article  PubMed  CAS  Google Scholar 

  18. Luanpitpong S, Talbott SJ, Rojanasakul Y et al (2010) Regulation of lung cancer cell migration and invasion by reactive oxygen species and Caveolin-1. J Biol Chem M110:124958. doi:10.1074

    Google Scholar 

  19. Ho C-C, Kuo S-H, Huang P-H, Huang H-Y, Yang C-H, Yang P-C (2008) Caveolin-1 expression is significantly associated with drug resistance and poor prognosis in advanced non-small cell lung cancer patients treated with gemcitabine-based chemotherapy. Lung Cancer 59:105–110

    Article  PubMed  Google Scholar 

  20. Yoo SH, Park YS, Kim HR et al (2003) Expression of caveolin-1 is associated with poor prognosis of patients with squamous cell carcinoma of the lung. Lung cancer 42:195–202

    Article  PubMed  Google Scholar 

  21. Yang CPH, Galbiati F, Volonté D, Horwitz SB, Lisanti MP (1998) Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells. FEBS Lett 439:368–372

    Article  PubMed  CAS  Google Scholar 

  22. Bélanger MM, Gaudreau M, Roussel E, Couet J (2004) Role of caveolin-1 in etoposide resistance development in A549 lung cancer cells. Cancer Biol Ther 3:954–959

    Article  PubMed  Google Scholar 

  23. Park J, Bae E, Lee C et al (2010) RNA interference-directed caveolin-1 knockdown sensitizes SN12CPM6 cells to doxorubicin-induced apoptosis and reduces lung metastasis. Tumor Biol 31:643–650

    Article  CAS  Google Scholar 

  24. Tirado OM, MacCarthy CM, Fatima N, Villar J, Mateo-Lozano S, Notario V (2010) Caveolin-1 promotes resistance to chemotherapy-induced apoptosis in Ewing’s sarcoma cells by modulating PKCα phosphorylation. Int J Cancer 126:426–436

    Article  PubMed  CAS  Google Scholar 

  25. Nakatani K, Wada T, Nakamura M, Uzawa K, Tanzawa H, Fujita S (2005) Expression of caveolin-1 and its correlation with cisplatin sensitivity in oral squamous cell carcinoma. J Cancer Res Clin 131:445–452

    Article  CAS  Google Scholar 

  26. Shajahan AN, Wang A, Decker M, Minshall RD, Liu MC, Clarke R (2007) Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. J Biol Chem 282:5934–5943

    Article  PubMed  CAS  Google Scholar 

  27. Kartalou M, Essigmann JM (2001) Mechanisms of resistance to cisplatin. Mutat Res Fundam Mol Mech Mugag 478:23–43

    Article  CAS  Google Scholar 

  28. Stewart DJ (2007) Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 63:12–31

    Article  PubMed  Google Scholar 

  29. Rungtabnapa P, Nimmannit U, Halim H, Rojanasakul Y, Chanvorachote P (2011) Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation. Am J Physiol Cell Physiol 300:C235–C245

    Article  PubMed  CAS  Google Scholar 

  30. Kato K, Hida Y, Miyamoto M (2002) Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Am Cancer Soc 94:929–933

    CAS  Google Scholar 

  31. Williams TM, Hassan GS, Li J et al (2005) Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer. J Biol Chem 280:25134–25145

    Article  PubMed  CAS  Google Scholar 

  32. Dasari A, Bartholomew JN, Volonte D, Galbiati F (2006) Oxidative induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Res 66:10805–10814

    Article  PubMed  CAS  Google Scholar 

  33. Chretien A, Piront N, Delaive E, Demazy C, Ninane N, Toussaint O (2008) Increased abundance of cytoplasmic and nuclear caveolin 1 in human diploid fibroblasts in H2O2-induced premature senescence and interplay with p38αMAPK. FEBS Lett 582:1685–1692

    Article  PubMed  CAS  Google Scholar 

  34. Linge A, Weinhold K, Blasche R, Kasper M, Barth K (2007) Downregulation of caveolin-1 affects bleomycin-induced growth arrest and cellular senescence in A549 cells. Int J Biochem Cell Biol 39:1964–1974

    Article  PubMed  CAS  Google Scholar 

  35. Bartholomew JN, Dasari A, Galbiati F (2009) Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway. Cancer Res 69:2878–2886

    Article  PubMed  CAS  Google Scholar 

  36. Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    Article  PubMed  CAS  Google Scholar 

  37. Williams TM, Lisanti MP (2005) Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 28:C494–C506

    Google Scholar 

  38. Sunaga N, Miyajima K, Suzuki M et al (2004) Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res 64:4277–4285

    Article  PubMed  CAS  Google Scholar 

  39. Salganik RI (2001) The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr 20:464S–472S

    PubMed  CAS  Google Scholar 

  40. Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Krich Rajprasit and Mr. Hasseri Halim. This study was supported by Ratchadaphiseksomphot Endowment Fund, Chulalongkorn University (Chanvorachote P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pithi Chanvorachote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pongjit, K., Chanvorachote, P. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism. Mol Cell Biochem 358, 365–373 (2011). https://doi.org/10.1007/s11010-011-0988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0988-x

Keywords

Navigation