Skip to main content
Log in

Induction and activation of the p53 pathway: a role for the protein kinase CK2?

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Protein kinase CK2 has many established in vitro substrates, but it is only within the past few years that we have begun to ascertain which of these are its real physiological targets, how their phosphorylation may contribute towards regulating normal cell physiology, and how phosphorylation of these proteins might influence the development of diseases such as cancer. One of the well-characterised in vitro substrates for CK2 is the tumour suppressor protein, p53. However, the physiological nature of this interaction has never been fully established. In the present article, we summarise a recent study from our laboratory showing that phosphorylation of p53 at Ser392, the sole site modified by CK2 in vitro, is regulated by a novel mechanism where the stoichiometry of phosphorylation is governed by the rate of turnover of the p53 protein. Such a model is entirely consistent with phosphorylation by a constitutively active protein kinase such as CK2. In contrast to this, while there is overwhelming evidence that CK2 phosphorylates p53 in vitro and is the only detectable Ser392 protein kinase in cell extracts, our data raise uncertainty as to whether this interaction truly reflects events underpinning Ser392 phosphorylation in vivo. We consider the possible role of CK2 in regulating the p53 response in a wider context and suggest key issues that should be addressed experimentally to provide a more cohesive picture of the relationship between this important protein kinase and a pivotal anti-cancer surveillance system in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    Article  PubMed  CAS  Google Scholar 

  2. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283

    Article  PubMed  CAS  Google Scholar 

  3. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  PubMed  CAS  Google Scholar 

  4. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15

    Article  PubMed  CAS  Google Scholar 

  5. Ruzzene M, Pinna LA (2010) Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim Biophys Acta 1804:499–504

    PubMed  CAS  Google Scholar 

  6. Siddiqui-Jain A, Drygin D, Streiner N, Chua P, Pierre F, O’Brien SE, Bliesath J, Omori M, Huser N, Ho C, Proffitt C, Schwaebe MK, Ryckman DM, Rice WG, Anderes K (2010) CX-4945, an orally bioavailable selective inhibitor of protein kinase CK2, inhibits prosurvival and angiogenic signaling and exhibits antitumor efficacy. Cancer Res 70:10288–10298

    Article  PubMed  CAS  Google Scholar 

  7. Meggio F, Pinna LA (2003) One thousand and one substrates of protein kinase CK2? FASEB J 17:349–368

    Article  PubMed  CAS  Google Scholar 

  8. Kato T Jr, Delhase M, Hoffmann A, Karin M (2003) CK2 is a C-terminal IkappaB kinase responsible for NF-kappaB activation during the UV response. Mol Cell 12:829–839

    Article  PubMed  CAS  Google Scholar 

  9. Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H, Goodman R, Lozano G, Zhao Y, Lu H (2001) A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7:283–292

    Article  PubMed  CAS  Google Scholar 

  10. Anderson CW, Appella E (2009) Signaling to the p53 tumor suppressor through pathways activated by genotoxic and non-genotoxic stresses. In: Bradshaw RA, Dennis EA (eds) Handbook of cell signaling. Elsevier, Amsterdam, pp 237–247

    Google Scholar 

  11. Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171

    Article  PubMed  CAS  Google Scholar 

  12. Kruse JP, Gu W (2008) SnapShot: p53 posttranslational modifications. Cell 133:930–30 e1

    Google Scholar 

  13. Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1:a000950

    Article  PubMed  Google Scholar 

  14. Herrmann CP, Kraiss S, Montenarh M (1991) Association of casein kinase II with immunopurified p53. Oncogene 6:877–884

    PubMed  CAS  Google Scholar 

  15. Meek DW, Simon S, Kikkawa U, Eckhart W (1990) The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase 2. EMBO J 9:3253–3260

    PubMed  CAS  Google Scholar 

  16. Prowald A, Schuster N, Montenarh M (1997) Regulation of the DNA binding of p53 by its interaction with protein kinase CK2. FEBS Lett 408:99–104

    Article  PubMed  CAS  Google Scholar 

  17. Schuster N, Prowald A, Schneider E, Scheidtmann KH, Montenarh M (1999) Regulation of p53 mediated transactivation by the beta-subunit of protein kinase CK2. FEBS Lett 447:160–166

    Article  PubMed  CAS  Google Scholar 

  18. Schuster N, Gotz C, Faust M, Schneider E, Prowald A, Jungbluth A, Montenarh M (2001) Wild-type p53 inhibits protein kinase CK2 activity. J Cell Biochem 81:172–183

    Article  PubMed  CAS  Google Scholar 

  19. Hupp TR, Meek DW, Midgley CA, Lane DP (1992) Regulation of the specific DNA binding function of p53. Cell 71:875–886

    Article  PubMed  CAS  Google Scholar 

  20. Sakaguchi K, Sakamoto M, Lewis MS, Anderson CW, Erikson JW, Appella E, Xie D (1997) Phosphorylation of serine 392 stabilises the tetramer formation of tumor suppressor protein p53. Biochemistry 36:10117–10124

    Article  PubMed  CAS  Google Scholar 

  21. Milne DM, Palmer RH, Meek DW (1992) Mutation of the casein kinase II phosphorylation site abolishes the anti-proliferative activity of p53. Nucleic Acids Res 20:5565–5570

    Article  PubMed  CAS  Google Scholar 

  22. Bruins W, Zwart E, Attardi LD, Iwakuma T, Hoogervorst EM, Beems RB, Miranda B, van Oostrom CT, van den Berg J, van den Aardweg GJ, Lozano G, van Steeg H, Jacks T, de Vries A (2004) Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389. Mol Cell Biol 24:8884–8894

    Article  PubMed  CAS  Google Scholar 

  23. Hoogervorst EM, Bruins W, Zwart E, van Oostrom CT, van den Aardweg GJ, Beems RB, van den Berg J, Jacks T, van Steeg H, de Vries A (2005) Lack of p53 Ser389 phosphorylation predisposes mice to develop 2-acetylaminofluorene-induced bladder tumors but not ionizing radiation-induced lymphomas. Cancer Res 65:3610–3616

    Article  PubMed  CAS  Google Scholar 

  24. Bruins W, Bruning O, Jonker MJ, Zwart E, van der Hoeven TV, Pennings JL, Rauwerda H, de Vries A, Breit TM (2008) The absence of Ser389 phosphorylation in p53 affects the basal gene expression level of many p53-dependent genes and alters the biphasic response to UV exposure in mouse embryonic fibroblasts. Mol Cell Biol 28:1974–1987

    Article  PubMed  CAS  Google Scholar 

  25. Gillotin S, Yap D, Lu X (2010) Mutation at Ser392 specifically sensitizes mutant p53H175 to mdm2-mediated degradation. Cell Cycle 9:1390–1398

    Article  PubMed  CAS  Google Scholar 

  26. Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713

    PubMed  CAS  Google Scholar 

  27. Huang C, Ma WY, Maxiner A, Sun Y, Dong Z (1999) p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J Biol Chem 274:12229–12235

    Article  PubMed  CAS  Google Scholar 

  28. Keller D, Zeng X, Li X, Kapoor M, Iordanov MS, Taya Y, Lozano G, Magun B, Lu H (1999) The p38MAPK inhibitor SB203580 alleviates ultraviolet-induced phosphorylation at serine 389 but not serine 15 and activation of p53. Biochem Biophys Res Commun 261:464–471

    Article  PubMed  CAS  Google Scholar 

  29. Cuddihy AR, Wong AH, Tam NW, Li S, Koromilas AE (1999) The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 18:2690–2702

    Article  PubMed  CAS  Google Scholar 

  30. Radhakrishnan SK, Gartel AL (2006) CDK9 phosphorylates p53 on serine residues 33, 315 and 392. Cell Cycle 5:519–521

    Article  PubMed  CAS  Google Scholar 

  31. Claudio PP, Cui J, Ghafouri M, Mariano C, White MK, Safak M, Sheffield JB, Giordano A, Khalili K, Amini S, Sawaya BE (2006) Cdk9 phosphorylates p53 on serine 392 independently of CKII. J Cell Physiol 208:602–612

    Article  PubMed  CAS  Google Scholar 

  32. Blaydes JP, Hupp TR (1998) DNA damage triggers DRB-resistant phosphorylation of human p53 at the CK2 site. Oncogene 17:1045–1052

    Article  PubMed  CAS  Google Scholar 

  33. Kapoor M, Lozano G (1998) Functional activation of p53 via phosphorylation following DNA damage by UV but not gamma radiation. Proc Natl Acad Sci USA 95:2834–2837

    Article  PubMed  CAS  Google Scholar 

  34. Lu H, Taya Y, Ikeda M, Levine AJ (1998) Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein ar serine-389. Proc Natl Acad Sci USA 95:6399–6402

    Article  PubMed  CAS  Google Scholar 

  35. Saito S, Yamaguchi H, Higashimoto Y, Chao C, Xu Y, Fornace AJ Jr, Appella E, Anderson CW (2003) Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278:37536–37544

    Article  PubMed  CAS  Google Scholar 

  36. Saito S, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E, Anderson CW (2002) ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J Biol Chem 277:12491–12494

    Article  PubMed  CAS  Google Scholar 

  37. Cox ML, Meek DW (2010) Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli. Cell Signal 22:564–571

    Article  PubMed  CAS  Google Scholar 

  38. de Stanchina E, McCurrach ME, Zindy F, Shieh S-Y, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ, Lowe SW (1998) E1A signaling to p53 involves the p19ARF tumor suppressor. Genes Dev 12:2434–2442

    Article  PubMed  Google Scholar 

  39. Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q, Wahl GM, Heimbrook DC, Vassilev LT (2004) Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 279:53015–53022

    Article  PubMed  CAS  Google Scholar 

  40. Samad A, Anderson CW, Carroll RB (1986) Mapping of phosphomonoester and apparent phosphodiester bonds of the oncogene product p53 from simian virus 40-transformed 3T3 cells. Proc Natl Acad Sci USA 83:897–901

    Article  PubMed  CAS  Google Scholar 

  41. Sayed M, Kim SO, Salh BS, Issinger OG, Pelech SL (2000) Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem 275:16569–16573

    Article  PubMed  CAS  Google Scholar 

  42. Oster B, Bundgaard B, Hupp TR, Hollsberg P (2008) Human herpesvirus 6B induces phosphorylation of p53 in its regulatory domain by a CK2- and p38-independent pathway. J Gen Virol 89:87–96

    Article  PubMed  CAS  Google Scholar 

  43. McKendrick L, Milne D, Meek D (1999) Protein kinase CK2-dependent regulation of p53 function: evidence that the phosphorylation status of the serine 386 (CK2) site of p53 is constitutive and stable. Mol Cell Biochem 191:187–199

    Article  PubMed  CAS  Google Scholar 

  44. Gotz C, Kartarius S, Scholtes P, Nastainczyk W, Montenarh M (1999) Identification of a CK2 phosphorylation site in mdm2. Eur J Biochem 266:493–501

    Article  PubMed  CAS  Google Scholar 

  45. Blattner C, Hay TJ, Meek DW, Lane DP (2002) Hypophosphorylation of Mdm2 augments p53 stability. Mol Cell Biol 22:6170–6182

    Article  PubMed  CAS  Google Scholar 

  46. Huart AS, MacLaine NJ, Meek DW, Hupp TR (2009) CK1alpha plays a central role in mediating MDM2 control of p53 and E2F-1 protein stability. J Biol Chem 284:32384–32394

    Article  PubMed  CAS  Google Scholar 

  47. Kulikov R, Boehme KA, Blattner C (2005) Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance. Mol Cell Biol 25:7170–7180

    Article  PubMed  CAS  Google Scholar 

  48. Meek DW, Hupp TR (2009) The regulation of MDM2 by multisite phosphorylation—opportunities for molecular-based intervention to target tumours? Semin Cancer Biol 20:19–28

    Article  PubMed  Google Scholar 

  49. Winter M, Milne D, Dias S, Kulikov R, Knippschild U, Blattner C, Meek D (2004) Protein kinase CK1-delta phosphorylates key sites in the acidic domain of Mdm2 that regulate p53 turnover. Biochemistry 43:16356–16364

    Article  PubMed  CAS  Google Scholar 

  50. Onel K, Cordon-Cardo C (2004) MDM2 and prognosis. Mol Cancer Res 2:1–8

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Association for International Cancer Research who funded the study described in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Meek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meek, D.W., Cox, M. Induction and activation of the p53 pathway: a role for the protein kinase CK2?. Mol Cell Biochem 356, 133–138 (2011). https://doi.org/10.1007/s11010-011-0966-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0966-3

Keywords

Navigation