Skip to main content

Advertisement

Log in

Ikaros, CK2 kinase, and the road to leukemia

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ikaros encodes a zinc finger protein that is essential for hematopoiesis and that acts as a tumor suppressor in leukemia. Ikaros function depends on its ability to localize to pericentromeric-heterochromatin (PC-HC). Ikaros protein binds to the upstream regulatory elements of target genes, aids in their recruitment to PC-HC, and regulates their transcription via chromatin remodeling. We identified four novel Ikaros phosphorylation sites that are phosphorylated by CK2 kinase. Using Ikaros phosphomimetic and phosphoresistant mutants of the CK2 phosphorylation sites, we demonstrate that (1) CK2-mediated phosphorylation inhibits Ikaros’ localization to PC-HC; (2) dephosphorylation of Ikaros at CK2 sites increases its binding to the promoter of the terminal deoxynucleotidetransferase (TdT) gene, leading to TdT repression during thymocyte differentiation; and (3) hyperphosphorylation of Ikaros promotes its degradation by the ubiquitin/proteasome pathway. We show that Ikaros is dephosphorylated by Protein Phosphatase 1 (PP1) via interaction at a consensus PP1-binding motif, RVXF. Point mutations that abolish Ikaros-PP1 interaction result in functional changes in DNA-binding affinity and subcellular localization, similar to those observed in hyperphosphorylated Ikaros and/or Ikaros phosphomimetic mutants. Phosphoresistant Ikaros mutations at CK2 sites restored Ikaros’ DNA-binding activity and localization to PC-HC and prevented accelerated Ikaros degradation. These results demonstrate the role of CK2 kinase in lymphocyte differentiation and in regulation of Ikaros’ function, and suggest that CK2 promotes leukemogenesis by inhibiting the tumor suppressor activity of Ikaros. We propose a model whereby a balance between CK2 kinase and PP1 phosphatase is essential for normal lymphocyte differentiation and for the prevention of malignant transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Georgopoulos K, Moore DD, Derfler B (1992) Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258(5083):808–812

    Article  PubMed  CAS  Google Scholar 

  2. Yu S, Asa SL, Ezzat S (2002) Fibroblast growth factor receptor 4 is a target for the zinc-finger transcription factor Ikaros in the pituitary. Mol Endocrinol 16(5):1069–1078

    Article  PubMed  CAS  Google Scholar 

  3. Molnár A, Georgopoulos K (1994) The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol 14(12):8292–8303

    PubMed  Google Scholar 

  4. Sun L, Liu A, Georgopoulos K (1996) Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 15(19):5358–5369

    PubMed  CAS  Google Scholar 

  5. Ronni T, Payne KJ, Ho S, Bradley MN, Dorsam G, Dovat S (2007) Human Ikaros function in activated T cells is regulated by coordinated expression of its largest isoforms. J Biol Chem 282(4):2538–2547

    Article  PubMed  CAS  Google Scholar 

  6. Kim JH, Ebersole T et al (2009) Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing. Genome Res 19(4):533–544

    Article  PubMed  CAS  Google Scholar 

  7. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91(6):845–854

    Article  PubMed  CAS  Google Scholar 

  8. Koipally J, Renold A, Kim J, Georgopoulos K (1999) Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J 18(11):3090–3100

    Article  PubMed  CAS  Google Scholar 

  9. Koipally J, Georgopoulos K (2000) Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J Biol Chem 275(26):19594–19602

    Article  PubMed  CAS  Google Scholar 

  10. O’Neill DW, Schoetz SS et al (2000) An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Mol Cell Biol 20(20):7572–7582

    Article  PubMed  Google Scholar 

  11. Kim J, Sif S et al (1999) Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10(3):345–355

    Article  PubMed  CAS  Google Scholar 

  12. Liberg D, Smale ST, Merkenschlager M (2003) Upstream of Ikaros. Trends Immunol 24(11):567–570

    Article  PubMed  CAS  Google Scholar 

  13. Wu L, Nichogiannopoulou A, Shortman K, Georogpoulos K (1997) Cell-autonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid lineage. Immunity 7(4):483–492

    Article  PubMed  CAS  Google Scholar 

  14. Winandy S, Wu P, Georgopoulos K (1995) A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83(2):289–299

    Article  PubMed  CAS  Google Scholar 

  15. Mullighan CG, Gooha S et al (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446(7137):758–764

    Article  PubMed  CAS  Google Scholar 

  16. Mullighan CG, Miller CB et al (2008) BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453(7191):110–114

    Article  PubMed  CAS  Google Scholar 

  17. Kuiper RP, Schoenmakers EF et al (2007) High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 21(6):1258–1266

    Article  PubMed  CAS  Google Scholar 

  18. Marcais A, Jeannet R et al (2010) Genetic inactivation of Ikaros is a rare event in human T-ALL. Leuk Res 34(4):426–429

    Article  PubMed  CAS  Google Scholar 

  19. Dovat S, Payne KJ (2010) Tumor suppression in T cell leukemia—the role of Ikaros. Leuk Res 34(4):416–417

    Article  PubMed  CAS  Google Scholar 

  20. Sun L, Heerema N et al (1999) Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci USA 96(2):680–685

    Article  PubMed  CAS  Google Scholar 

  21. Nakase K, Ishimaru F et al (2000) Dominant negative isoform of the Ikaros gene in patients with adult B-cell acute lymphoblastic leukemia. Cancer Res 60(15):4062–4065

    PubMed  CAS  Google Scholar 

  22. Crescenzi B, La Starza R et al (2004) Submicroscopic deletions in 5q-associated malignancies. Haematologica 89(3):281–285

    PubMed  CAS  Google Scholar 

  23. Yagi T, Hibi S et al (2002) High frequency of Ikaros isoform 6 expression in acute myelomonocytic and monocytic leukemias: implications for up-regulation of the antiapoptotic protein Bcl-XL in leukemogenesis. Blood 99(4):1350–1355

    Article  PubMed  CAS  Google Scholar 

  24. Nakayama H, Ishimaru F et al (1999) Decreases in Ikaros activity correlate with blast crisis in patients with chronic myelogenous leukemia. Cancer Res 59(16):3931–3934

    PubMed  CAS  Google Scholar 

  25. Mullighan CG, Su X et al (2009) Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360(5):470–480

    Article  PubMed  CAS  Google Scholar 

  26. Dovat S, Ronni T, Russell D, Ferrini R, Cobb BS, Smale ST (2002) A common mechanism for mitotic inactivation of C2H2 zinc finger DNA-binding domains. Genes Dev 16(23):2985–2990

    Article  PubMed  CAS  Google Scholar 

  27. Gomez-del AP, Koipally J, Georgopoulos K (2005) Ikaros SUMOylation: switching out of repression. Mol Cell Biol 25(7):2688–2697

    Article  Google Scholar 

  28. Gomez-del AP, Maki K, Georgopoulos K (2004) Phosphorylation controls Ikaros’s ability to negatively regulate the G(1)-S transition. Mol Cell Biol 24(7):2797–2807

    Article  Google Scholar 

  29. Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST (2000) Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev 14(17):2146–2160

    Article  PubMed  CAS  Google Scholar 

  30. Trinh LA, Ferrini R et al (2001) Down-regulation of TdT transcription in CD4+CD8+ thymocytes by Ikaros proteins in direct competition with an Ets activator. Genes Dev 15(14):1817–1832

    Article  PubMed  CAS  Google Scholar 

  31. Groves T, Katis P, Madden Z, Manickam K, Ramsden D, Wu G, Guidos CJ (1995) In vitro maturation of clonal CD4+ CD8+ cell lines in response to TCR engagement. J Immunol 154(10):5011–5022

    PubMed  CAS  Google Scholar 

  32. Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ, Dovat S (2009) Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1. J Biol Chem 284(20):13869–13880

    Article  PubMed  CAS  Google Scholar 

  33. Wakula P, Beullens M, Ceulemans H, Stalmans W, Bollen M (2003) Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. J Biol Chem 278(21):18817–18823

    Article  PubMed  CAS  Google Scholar 

  34. Cohen PT (2002) Protein phosphatase 1—targeted in many directions. J Cell Sci 115(Pt 2):241–256

    PubMed  CAS  Google Scholar 

  35. Zhao S, Lee EY (1997) A protein phosphatase-1-binding motif identified by the panning of a random peptide display library. J Biol Chem 272(45):28368–28372

    Article  PubMed  CAS  Google Scholar 

  36. Gurel Z, Ronni T, Ho S, Kuchar J, Payne KJ, Turk CW, Dovat S (2008) Recruitment of ikaros to pericentromeric heterochromatin is regulated by phosphorylation. J Biol Chem 283(13):8291–8300

    Article  PubMed  CAS  Google Scholar 

  37. Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234(4774):364–368

    Article  PubMed  CAS  Google Scholar 

  38. Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21(7):267–271

    PubMed  CAS  Google Scholar 

  39. Kim TK, Maniatis T (1996) Regulation of interferon-gamma-activated STAT1 by the ubiquitin–proteasome pathway. Science 273(5282):1717–1719

    Article  PubMed  CAS  Google Scholar 

  40. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberhg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78(5):761–771

    Article  PubMed  CAS  Google Scholar 

  41. Channavajhala P, Seldin DC (2002) Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene 21(34):5280–5288

    Article  PubMed  CAS  Google Scholar 

  42. Kelliher MA, Seldin DC, Leder P (1996) Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. EMBO J 15(19):5160–5166

    PubMed  CAS  Google Scholar 

  43. Seldin DC, Leder P (1995) Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 267(5199):894–897

    Article  PubMed  CAS  Google Scholar 

  44. Landesman-Bollag E, Channavajhala PL, Cardiff RD, Seldin DC (1998) p53 deficiency and misexpression of protein kinase CK2alpha collaborate in the development of thymic lymphomas in mice. Oncogene 16(23):2965–2974

    Article  PubMed  CAS  Google Scholar 

  45. Rifkin IR, Channavajhala PL et al (1998) Acceleration of lpr lymphoproliferative and autoimmune disease by transgenic protein kinase CK2 alpha. J Immunol 161(10):5164–5170

    PubMed  CAS  Google Scholar 

  46. Avitahl N, Winandy S, Friedrich C, Jones B, Ge Y, Georgopoulos K (1999) Ikaros sets thresholds for T cell activation and regulates chromosome propagation. Immunity 10(3):333–343

    Article  PubMed  CAS  Google Scholar 

  47. Kathrein KL, Lorenz R, Innes AM, Griffiths E, Winandy S (2005) Ikaros induces quiescence and T-cell differentiation in a leukemia cell line. Mol Cell Biol 25(5):1645–1654

    Article  PubMed  CAS  Google Scholar 

  48. Wojcik H, Griffiths E, Staggs S, Hagman J, Winandy S (2007) Expression of a non-DNA-binding Ikaros isoform exclusively in B cells leads to autoimmunity but not leukemogenesis. Eur J Immunol 37(4):1022–1032

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by an R01 HL095120 grant, a St. Baldrick’s Foundation Career Development Award, the Four Diamonds Fund of the Pennsylvania State University, College of Medicine, and the John Wawrynovic Leukemia Research Scholar Endowment (SD). This study was also supported by the Center for Health Disparities and Molecular Medicine and the Department of Pathology and Human Anatomy, Loma Linda University School of Medicine (KJP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinisa Dovat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dovat, S., Song, C., Payne, K.J. et al. Ikaros, CK2 kinase, and the road to leukemia. Mol Cell Biochem 356, 201–207 (2011). https://doi.org/10.1007/s11010-011-0964-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0964-5

Keywords

Navigation