Skip to main content
Log in

Inhibition of p53-p21 pathway promotes the differentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

P53 is shown recently to play an important role in the proliferation and differentiation of bone marrow mesenchymal stem cells (BMMSCs). In this study, by inhibiting p53-p21 pathway with p53 inhibitor (p-fifty three inhibitor-alpha, PFT-α), we investigated the resulting effects on the differentiation of rat BMMSCs into cardiomyocyte-like cells. BMMSCs were isolated from bone marrow of SD rats by density gradient centrifugation. The fourth passage cells were divided into four groups: control group, PFT-α group, 5-AZA group, and PFT-α + 5-AZA group. The purified BMMSCs were identified by surface antigens and the proliferation and apoptosis of BMMSCs were examined by MTT and flow cytometry analysis. The expression of cTnI and CX-43 in BMMSCs after induction was detected by immunofluorescence and that of cTnI, p53, and p21 was detected by western blot. Our results demonstrated that PFT-α at 20 μmol/l significantly reduced the apoptosis and promoted the proliferation of BMMSCs, and induced BMMSCs to differentiate into cardiomyocyte-like cells. In conclusion, these data open up new possibility of modulating p53-p21 pathway for directed differentiation of BMMSCs into cardiomyocytes, which will be valuable for cardiovascular regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Elizabeth GN (2003) Cardiovascular disease. N Engl J Med 349:60–72

    Article  Google Scholar 

  2. Cao F, Sun DD, Li CX, Narsinh K, Zhao L, Li X, Feng XY, Zhang J, Duan YY, Wang J, Liu DJ, Wang HC (2009) Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. Eur Heart J 30(16):1986–1994

    Article  PubMed  Google Scholar 

  3. Yoshimura H, Muneta T, Nimura A (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327:449–462

    Article  CAS  PubMed  Google Scholar 

  4. Kassem M, Abdallah BM (2008) Human bone-marrow-derived mesenchymal stem cells: biological characteristics and potential role in therapy of degenerative diseases. Cell Tissue Res 331:157–163

    Article  PubMed  Google Scholar 

  5. Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426

    Article  CAS  PubMed  Google Scholar 

  6. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697–705

    Article  CAS  PubMed  Google Scholar 

  7. Pulukuri SM, Rao JS (2005) Activation of p53/p21Waf1/Cip1 pathway by 5-aza-2′-deoxycytidine inhibits cell proliferation, induces pro-apoptotic genes and mitogen-activated protein kinases in human prostate cancer cells. Int J Oncol 26(4):863–871

    CAS  PubMed  Google Scholar 

  8. Zhu WG, Hileman T, Ke Y, Wang P, Lu S, Duan W, Dai Z, Tong T, Villalona-Calero MA, Plass C, Otterson GA (2004) 5-Aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 279(15):15161–15166

    Article  CAS  PubMed  Google Scholar 

  9. Hong H, Takahashi K, Ichisaka T (2009) Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460:1132–1136

    Article  CAS  PubMed  Google Scholar 

  10. Armesilla DA, Elvira G, Silva A (2009) P53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells. Experimental cell research 315:3598–3610

    Article  Google Scholar 

  11. Briffa TG, Hobbs MS, Tonkin A, Sanfilippo FM, Hickling S, Ridout SC, Knuiman M (2011) Population trends of recurrent coronary heart disease event rates remain high. Circ Cardiovasc Qual Outcomes 4:107–113

    Article  PubMed  Google Scholar 

  12. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, BarnabéHeider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  PubMed  Google Scholar 

  13. Zeng Z, Jiang Z, Wang CS, Luo H, Huang YF, Jin XH (2010) Preoperative evaluation improves the outcome in heart transplant recipients with pulmonary hypertension-retrospective analysis of 106 cases. Transplant Proc 42(9):3708–3710

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Yu X, Lin Q, Deng C, Shan Z, Yang M, Lin S (2007) Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol 42(2):295–303

    Article  CAS  PubMed  Google Scholar 

  15. Wang JS, Shum-Tim D, Galipeau J, Chedrawy E, Eliopoulos N, Chiu RC (2000) Marrou stramol cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. Thorac Cardiovasc Surg 120(62):999–1005

    CAS  Google Scholar 

  16. Strauer BE, Brehm M, Zeus T, Köstering M, Hernandez A, Sorg RV, Kögler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918

    Article  PubMed  Google Scholar 

  17. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, Kalantzi M, Herbots L, Sinnaeve P, Dens J, Maertens J, Rademakers F, Dymarkowski S, Gheysens O, Van Cleemput J, Bormans G, Nuyts J, Belmans A, Mortelmans L, Boogaerts M, Van de Werf F (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367(9505):113–121

    Article  PubMed  Google Scholar 

  18. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H (2004) Intracoronary autologous bone marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial. Lancet 364(9429):141–148

    Article  PubMed  Google Scholar 

  19. Erbs S, Linke A, Schächinger V, Assmus B, Thiele H, Diederich KW, Hoffmann C, Dimmeler S, Tonn T, Hambrecht R, Zeiher AM, Schuler G (2007) Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the doppler sub-study of the reinfusion of enriched progenitor cells and infarct remodeling in acute myocardial infarction (REPAIR-AMI) trial. Circulation 116(4):366–374

    Article  PubMed  Google Scholar 

  20. Wang JA, Xie XJ, He H, Sun Y, Jiang J, Luo RH, Fan YQ, Dong L (2006) A prospective, randomized, controlled trial of autologous mesenchymal stem cells transplantation for dilated cardiomyopathy. Chin J Cardiol 34(2):107–111

    Google Scholar 

  21. Levine AJ, Finlay CA, Hinds PW (2004) P53 is a tumor suppressor gene. Cell 116:67–69

    Article  Google Scholar 

  22. Schuler M, Green DR (2005) Transcription, apoptosis and P53: catch-22. Trends Gen 21(3):182–187

    Article  CAS  Google Scholar 

  23. Schneider-Stock R, Diab-Assef M, Rohrbeck A, Foltzer-Jourdainne C, Boltze C, Hartig R, Schönfeld P, Roessner A, Gali-Muhtasib H (2005) 5-aza-Cytidine is a potent inhibitor of DNA methyltransferase 3a and induces apoptosis in HCT-116 colon cancer cells via Gadd45- and p53-dependent mechanisms. J Pharmacol Exp Ther 312(2):525–536

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, Chua CC, Gao J, Chen Z, Landy CL, Hamdy R, Chua BH (2004) Pifithrin-α protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286:933–939

    Article  Google Scholar 

Download references

Acknowledgments

We thank Central Laboratory of School of Stomatology, Fourth Military Medical University for flow cytometry service. This research was supported by high-tech projects of Xijing Hospital Fourth Military Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AnLin Lv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Lv, A., Xing, Y. et al. Inhibition of p53-p21 pathway promotes the differentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes. Mol Cell Biochem 354, 21–28 (2011). https://doi.org/10.1007/s11010-011-0801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0801-x

Keywords

Navigation