Skip to main content
Log in

ANG II type I receptor antagonism improved nitric oxide production and enhanced eNOS and PKB/Akt expression in hearts from a rat model of insulin resistance

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Exogenous insulin therapy improves endothelial function in insulin resistant patients, indirectly indicating that nitric oxide synthase activity and NO production may be impaired. Insulin stimulates production of NO by activating a signaling pathway including insulin receptor substrate-1, phosphatidylinositol-3-kinase and protein kinase B (PKB/Akt). Angiotensin II type I (AT1) receptor-evoked oxidative stress is implicated in the inactivation of NO, impairing endothelium-dependent vasodilatation. Blocking the actions of Angiotensin II with an AT1 receptor antagonist (Losartan), has beneficial effects in patients with insulin resistance or type 2 diabetes mellitus. This study investigated whether elevated Angiotensin II influences myocardial insulin resistance, insulin signaling and NO production in a rat model of diet-induced obesity (DIO) by antagonizing the actions of the AT1 receptor with Losartan. Isolated, perfused hearts, Western blotting and flow-cytometric methods were utilized to determine myocardial function, expression and phosphorylation of key proteins and NO production, respectively. Results showed that hearts from DIO rats are insulin resistant (higher serine phosphorylation of IRS-1, lower insulin-stimulated phosphorylation of PKB/Akt and eNOS, lower NO production) and had poorer functional recovery and larger infarct development after ischaemia/reperfusion. Losartan improved the impaired functional recovery, and NO production and enhanced eNOS expression and phosphorylation and reduced infarct size in hearts from the DIO animals. Data obtained from Losartan treatment also revealed that Angiotensin II signaling modulates myocardial PKB/Akt expression. We conclude that Angiotensin II signaling exacerbates inhibition of NO production in insulin resistance and that this can be improved by AT1 antagonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sharma AM, Engeli S (2006) The role of rennin-angiotensin system blockade in the management of hypertension associated with the cardiometabolic syndrome. J Cardiometab Syndr 1:29–35

    Article  PubMed  Google Scholar 

  2. Ruige JB, Assendelft WJ, Dekker JM, Kostense PJ, Heine RJ, Bouter LM (1998) Insulin and risk of cardiovascular disease: a meta-analysis. Circulation 97:996–1001

    CAS  PubMed  Google Scholar 

  3. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M (2002) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108:1341–1348

    Google Scholar 

  4. Cai H, Harrison DG (2002) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    Google Scholar 

  5. Landmesser U, Dikalov S, Price SR et al (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209

    CAS  PubMed  Google Scholar 

  6. Li J, Zhao X, Li X, Lerea KM, Olson SC (2007) Angiotensin II type 2 receptor-dependent increases in nitric oxide synthase expression in the pulmonary endothelium is mediated via a G alpha i3.Ras/Raf.MAPK pathway. Am J Physiol Cell Physiol 292:C2185–C2196

    Article  CAS  PubMed  Google Scholar 

  7. Wei Y, Sowers JR, Nistala R et al (2006) Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem 281:35137–35146

    Article  CAS  PubMed  Google Scholar 

  8. Vehkavaara S, Mäkimattila S, Schlenzka A, Vakkilainen J, Westerbacka J, Yki-Järvinen H (2006) Insulin therapy improves endothelial function in type 2 diabetes. Arterioscler Thromb Vasc Biol 20:545–550

    Google Scholar 

  9. Zeng G, Nystrom FH, Ravichandran LV et al (2000) Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101:1539–1545

    CAS  PubMed  Google Scholar 

  10. Sowers JR (2004) Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol 286:H1597–H1602

    Article  CAS  PubMed  Google Scholar 

  11. Montagnani M, Chen H, Barr VA, Quon MJ (2001) Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt and Ser1179. J Biol Chem 276:30392–30398

    Article  CAS  PubMed  Google Scholar 

  12. Metha PD, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97

    Google Scholar 

  13. Werner N, Nickenig G (2003) AT1 receptors in atherosclerosis: biological effects including growth, angiogenesis and apoptosis. Eur Heart J Supp 5:9–13

    Article  Google Scholar 

  14. Brede M, Roell WS, Ritter O et al (2003) Cardiac hypertrophy is associated with decreased eNOS expression in angiotensin AT2 receptor-deficient mice. Hypertension 42:1177–1182

    Article  CAS  PubMed  Google Scholar 

  15. Velloso LA, Folli F, Sun XJ, White MF, Saad MJA, Kahn CR (1996) Cross-talk between the inhsulin and angiotensin signaling systems. Proc Natl Acad Sci USA 93:12490–12495

    Article  CAS  PubMed  Google Scholar 

  16. Andreozzi F, Laratta E, Sciacqua A, Perticone F, Sesti G (2004) Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ Res 94:1211–1218

    Article  CAS  PubMed  Google Scholar 

  17. Shinozaki K, Ayajiki K, Nishio Y, Sungaya T, Kashiwagi A, Okamura T (2004) Evidence for a causal role of the renin-angiotensin system in vascular dysfunction associated with insulin resistance. Hypertension 43:255–262

    Article  CAS  PubMed  Google Scholar 

  18. Dahlöf B, Devereux R, Kjeldsen SE et al (2002) LIFE Study Group. Losartan Intervention for Endpoint reduction in hypertension. Lancet 359:995–1003

    Article  PubMed  Google Scholar 

  19. Pickavance LC, Tadayyon M, Widdowson PS, Buckinham RE, Wilding JPH (1999) Therapeutic index for rosilitazone in dietary obese rats: separation of efficacy and haemodilution. Br J Pharmacol 128:1570–1576

    Article  CAS  PubMed  Google Scholar 

  20. Marais E, Genade S, Salie R, Huisamen B, Maritz S, Moolman JA, Lochner A (2005) The temporal relationship between p38 MAPK and HSP27 activation in ischaemic and pharmacological preconditioning. Basic Res Cardiol 100:35–47

    Article  CAS  PubMed  Google Scholar 

  21. Huisamen B, Donthi RV, Lochner A (2001) Insulin in combination with vanadate stimulates glucose transport in isolated cardiomyocytes from obese Zucker rats. Cardiovasc Drugs Ther 15:445–452

    Article  CAS  PubMed  Google Scholar 

  22. Strijdom H, Jacobs S, Hattingh S, Page C, Lochner A (2006) Nitric oxide production is higher in rat cardiac microvessel endothelial cells than ventricular cardiomyocytes in baseline and hypoxic conditions: a comparative study. FASEB J 20:314–316

    CAS  PubMed  Google Scholar 

  23. Strijdom H, Muller C, Lochner A (2004) Direct intracellular nitric oxide detection in isolated adult cardiomyocytes: flow cytometric analysis using the fluorescent probe, diaminofluorescein. J Mol Cell Cardiol 37:897–902

    Article  CAS  PubMed  Google Scholar 

  24. Du Toit EF, Nabben M, Lochner A (2005) A potential role for angiotensin II in obesity induced cardiac hypertrophy and ischaemic/reperfusion injury. Basic Res Cardiol 100:346–354

    Article  CAS  PubMed  Google Scholar 

  25. Landmesser U, Hornig B, Drexler H (2004) Endothelial function: a critical determinant in atherosclerosis? Circulation 109:27–33

    Article  Google Scholar 

  26. Galili O, Versari D, Sattler KJ et al (2006) Early experimental obesity is associated with coronary endothelial dysfunction and oxidative stress. Am J Physiol Heart Circ Physiol 292:H904–H911

    Article  PubMed  Google Scholar 

  27. Jaap AJ, Shore AC, Tooke JE (1997) Relationship of insulin resistance to microvascular dysfunction in subjects with fasting hyperglycaemia. Diabetologia 40:238–243

    Article  CAS  PubMed  Google Scholar 

  28. Naderali EK, Pickavance LC, Wilding John PH, Williams G (2001) Diet-induced endothelial dysfunction in the rat is independent of the degree of increase in total body weight. Clin Sci 100:635–641

    Article  CAS  PubMed  Google Scholar 

  29. Navarro-Cid J, Maeso R, Perez-Vizcaino F et al (1995) Effects of Losartan on blood pressure, metabolic alterations and vascular reactivity in the fructose-induced hypertensive rat. Hypertension 26:1074–1078

    CAS  PubMed  Google Scholar 

  30. Van den Meiracker AH, Admiraal PJJ, Janssen JA et al (1995) Hemodynamic and biochemical effects of the AT1 receptor antagonist Irbesartan in hypertension. Hypertension 25:22–29

    PubMed  Google Scholar 

  31. Folli F, Kahn CR, Hansen H, Bouchie JL, Feener EP (1997) Angiotensin II inhibits insulin signalling in aortic smooth muscle cells at multiple levels. A potential role of serine phosphorylation in insulin/angiotensin II crosstalk. J Clin Invest 100:2158–2169

    Article  CAS  PubMed  Google Scholar 

  32. Hotta H, Miura T, Miki T et al (2010) Angiotensin II type 1 receptor mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ Res 106:129–132

    Article  CAS  PubMed  Google Scholar 

  33. Seshiah PN, Weber DS, Tocic P, Valppu L, Taniyama Y, Griendling KK (2002) Angiotensin II stimulation of NAD(P)H oxidase activity—upstream mediators. Circ Res 91:406–413

    Article  CAS  PubMed  Google Scholar 

  34. Henriksen EJ (2007) Improvement of insulin sensitivity by antagonism of the rennin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 293:R974–R980

    CAS  PubMed  Google Scholar 

  35. Unger T, Chung O, Csikos T et al (1996) Angiotensin receptors. J Hypertens 14:3–9

    Google Scholar 

  36. Griendling KK, Lasseque B, Alexander RW (1996) Angiotensin receptors and their therapeutic implications. Annu Rev Pharmacol Toxicol 36:281–306

    Article  CAS  PubMed  Google Scholar 

  37. Kawahara S, Umemoto S, Tanaka M, Umeji K, Matsuda S, Kubo M, Matsuzaki M (2005) Up-regulation of Akt and eNOS induces vascular smooth muscle cell differentiation in hypertension in vivo. J Cardiovasc Pharmacol 45:367–374

    Article  CAS  PubMed  Google Scholar 

  38. Lochner A, Genade S, Moolman JA (2003) Ischemic preconditioning: infarct size is a more reliable endpoint than functional recovery. Basic Res Cardiol 98:337–346

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Huisamen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huisamen, B., Pêrel, S.J.C., Friedrich, S.O. et al. ANG II type I receptor antagonism improved nitric oxide production and enhanced eNOS and PKB/Akt expression in hearts from a rat model of insulin resistance. Mol Cell Biochem 349, 21–31 (2011). https://doi.org/10.1007/s11010-010-0656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0656-6

Keywords

Navigation